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We present a new lattice model whose partition function is equal to the sum over all self-avoiding closed random chains
of m colors. The fluctuating variables are pure phases similar to an XY model and, contrary to previous proposals, no awk-
ward #n — 0 limits are involved. The model can be transformed to a real O () invariant field theory, which shows that the
critical indices ate O (m) like. There exists a simple relation to O(m) spin models which serves to estimate the critical tem-
peratures.

Self-avoiding random chains play an important role in polymer physics [1]. It is therefore desirable to possess
a simple model which permits a complete study of the statistical mechanics of such chains. Guided by the know-
ledge that classical planar spin models are dually equivalent to non-backtracking oriented random chains [2] and
that a model involving an n-dimensional spin vector S, of length Sa2 = n contains, in the strong coupling expansion
and the limit » — 0, all configurations of a single self-avoiding random chain [3,4], it has been suggested [5] that
the partition function

7= l_[ fdQ(x) exp(z=>1 B, E S, (x)S,(x +i)) , 1)
with
Z—>1 Sa2 =n—->0, @

should be used to study grand canonical ensembles of self-avoiding polymer chains with m colors. The measure of
integration d$2 covers the surface of the n-dimensional sphere and is normalized to unity, and the vectors # run
over all %q positively oriented next neighbors. The parameters 8, are the Boltzmann factors exp(—e,/T) =
exp(— B};"l) where €, is the energy per link of the polymer chain.

Unfortunately, this model does not really fulfill its purpose. When performing a low §, (i.e. low T) expansion,
the partition functions contain contributions of the form

[aa@) [ e +i) %‘? B2S2(x)S2(x +i) = tm ? 82, ®)

These correspond to chains running back and forth on the same link, which a self-avoiding chain cannot do. In
addition, when allowing for a break-up of chains by adding to the exponent in (1) an external field term

2 2 1y (x)S,(x) with a Boltzmann factor 4, = exp(—e}’r/T), there are terms 3 Z, hg which correspond to spurious
“zero-link” objects [6,7].
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The purpose of this note is to remedy such difficulties by setting up a new model which has the additional
merit of being much simpler than (1).
If {L} denotes all self-avoiding closed random chain configurations we want to calculate,

) _ - !
2= 4 expl- (D] {L?}ﬁ, )

where / denotes the total number of link vectors / occupied by the chains. We may assign to each link vector i an
occupation number n;(x) whose value can be zero or one. The property of being self-avoiding means that when-
ever one looksat all occupation numbers around each site x, the numbers n; have to be either all zero, or two of
them can be unity which means that

q/2

2 nix —i)+n(x)=0 or 2.

This constraint can be written as follows:

l;[ z(gzo,z 5. ey ) l;I f d02(:) Z(x)z>0 , expl:i ?(ﬁ(x) Z} [n;(x —i) +n;(x)] — Z(x)):l
-1 f dg(:)z(x) » exp(_i ZE()(x)z(x)) exp(i § [0(x) +0(x +1)] ni(x)) . Q)

Introducing the complex pure phase variables U(x) = el®®), this becomes

l;l(f dg(:) {1+ U7 2}) l], [Ux) UG +)] "X (©6)

atid

Multiplying this with the Boltzmann factor ﬁ"f(x) and summing over all n;(x) gives the partition function
z-1I(f [ Fo s we) )+ preue +i). Q)

It can easily be checked that an expansion in powers of 8 does indeed reproduce all self-avoiding chains. The fac-
tor 1 + (U*)? in the measure of integration makes sure that each site is either empty or touched by two occupied
links, while the factors U(x)U(x + i) guarantee the connectedness of the chain. Notice that Z is real since it is in-
variant under the exchange U — U*, although it does not have a conventional Boltzmann form.

The calculation of the thermodynamic properties is most convenient by transforming Z into a theory of real
fields. For this we simply note that

z=1]( [ ) 5 () 1 + 31/ o) 21) I 1+ puyuce +1) ®)

coincides with (7), since 3 (d/du)? has the same effect upon u2, in the integral [~ _du §(u), as (U*)2 has upon U2
in the integral /™ _d6 /2@, Alternatively, we can write

Z= I;l(fwdu(x) j"" gg—%[l +3 2(x)])exp( Ea(x)u(x)) H [1+Bu(x)u(x +i)] . 9)
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The model can easily be extended to m colors, by using the constraint

m
ar:]l I;I za(xz))——-o,2 8 s [n e —iynf ()],2 (%) I;I , (x)z=>0,2 8 5,2%x),2(0) > 10)

where the n?(x) can take on the values zero or one, corresponding to the link x, x +7 being empty or carrying
color a. The first Kronecker § ensures self-avoidance within each color a [see (5)]. To have avoidance between dif-
ferent colors as well, we have to make sure that whenever a line of color a passes through a site x[z%(x) = 2}, no
line of a different color can pass through the same site. This is guaranteed by the second Kronecker 6.

In order to exhibit the underlying O(m) symmetry, we also introduce the superfluous constraint

I zig,l Ox ) (11
This gives
z=T1 (9@ ] f 8] r B T {1+ [Ur)2v?

-x'a[ o b _f ! _f i {1+ [Ug)]*V2(x)}

x T e prreon?y Mo+ vie I 1+ a,UU 6+ Vi) (12)
where V' =exp(i8), V; = exp(is;). The integrals over ¥ and V; can be done and we arrive at
=17 LR (142 [UJ(x)]z)g(l + D8,V Uytx +0). (13)

This is the direct generalization of (7) to m colors. The same generalization takes place in the real field represen-
tations (8) and (9) with u and « becoming real O(m) vector fields. This symmetry determines the universality
class of the critical indices. There is no problem of allowing for the possibility of break-up of chains.by inserting
magnetic fields —Ex,aha(x) U,(x), such that the complete partition function of self-avoiding random chains with
m colors is

by = de,
z=11 f du, f —2—? [l (1 + E%ag) exp(— 2 [o () + Ay (x)] ua(x))
x.a o ™ x a x,a
x [1 ( 1+ 27 Buy (g + i)) . (14)
X, a
It is useful to compare this with the O(m) spin model

Zou=ILTI faawyexp(pn 2 5,095, +0). as)

in which case there is a well-known similar field theory
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e i dg
Zog=I1 [ aug [ 011 Gm = DIG Iy 0"2DE 5y (e
a _joo

X exp (; 25 [oy(x) + hy(x)] ua(x)) I1 exp( 20 B, (X (x + i)) . (16)
Here, the expansion of the Bessel factors
/2 — 1) 2 —1)! 2
O+ o D it e Died) +- an

gives rise to all possible multiple occupancies of sites.
The case m = 1 reduces to the Ising model

Zoay = 7king = I;l f du f -;%Ix] cha exp(~ ?[a(x) + h(x)] u(x)) 51’ exp[fu(x)ulx +1)] . (18)

Since the integration of the « variables restricts # to the values £ 1, we can write
T expl8uteyute +01 = en o2 TT 1+ th gy uoyuge +0) (19)
, )i

Thus, apart from the trivial factor (ch B)Nq/ 2 the partition function of self-avoiding random chains with m = 1 can
be obtained from that of the Ising model by identifying th §; = § and performing a perturbation expansion in *!

AV=log(1 +1a?) —logcha=— 2504 +.... (20)

The lowest contribution of AV is suppressed by a Boltzmann factor 88, such that there are practically no correc-
tions close to the critical point. In table 1 we compare the critical values obtained from th §; with recent Monte
Carlo data on random chains by Helfrich’s group [8] and see that the agreement is indeed excellent ¥2,

For general m, there is a similar relation between (14) and (19). Expanding the exponential into Gegenbauer
polynomials

exp (Bm 20.8,(x)S,(x + i)) = Z_)O d,(B,y) c,gm/2—1>(zasa(x)sa($c +i)), (21)
with

_ T(@n/2) _T(m/2) m
dy(B) =W1m/2-1(ﬁ), d(B) "Wﬁ{__z I p(B)

we find the low temperature series

Ly (B) V@
= 2 m_ Tm/2\m 2-1 .
Foum = [oem) ™ H f 4 [1 ' {ni(x)z=:1,2,...}(m - 21m/2—1(ﬁm)) O~ (BaSal)Selx ﬂ))]' (22

*1 Notice that the partition function of the Ising model would be obtained from the original Ansatz by allowing in the constraint
(5), for all multiple occupancies of a site, i.e. by summing Z over 0, 2, 4, ... . This replaces in (7) 1+ (U*)2 by 1 +(U*)? +
(UM% + .. andin (9) 1 +a2/2by 1 +a2/2 +o*/4l + .. =cha.

*2 Apart from their five-dimensional which must be wrong.
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Table 1

Transition temperatures of self-avoiding random chains of m colors on a s.c, lattice as estimated from those of the O(m) spin

model via the relation g¢ ~ Imlz(ﬁfn)/lmﬂ_l(ﬁfn) =th g, 1, (ﬁ%)/]o(ﬁg), cth Bg — 1/[3%, ..form=1,2,3, ... The third row
gives the Monte Carlo data of ref. [8] with dubious results put in parentheses. The last row contains the mean field estimates.

m q/2
2 3 4 5 >1

1 65 0.4407 0.2217 0.1499 0.1140 1/q
th g§ 0.4142 0.2181 0.1488 0.1135 1/q
Brc 0.42 0.22 0.15 (0.14)

2 85 0.75 0.439 0.298 0.227 2/q
1,B5)/T83) 0.35 0.24 0.15 0.11 1/q
By (0.45)

3 85 0.694 0.457 0.341 3/q
cth 6§ — 1/8§ 0.224 0.150 0.113 1/q
BMC

all BYUF 0.25 0.167 0.125 0.1 1/q

For B <., the diagrams are dominated by n;(x)=1 loops. In this case since C; (z) = (m — z)z, the dQ integrals
produce all self-avoiding loops of m colors.

Zogmy ~ [doBm)) V2 2 "L (L B ) a1 B ') 5 | (23)
{£}

where n[L] is the number of closed loops in the ensemble {L}. Corrections arise only to order (Im/z/lm/z_l )8,
Thus we may use the critical temperatures of O(rn) spin models and estimate §; from the relation

ﬁc = Im/2(6r31)/1m/2_1(ﬂ,(;,).

This gives the numbers shown in table 1. Our model can easily be studied by mean field methods. This gives a crit-
ical point at B}}’IF = 1/q as compared with the O() value m/q. For large §, the total loop length approaches V,
which is in contrast to the O(1) model where it is Ng/2 since then, multiple occupancies of each site allow to fill
each link.

Fluctuation corrections to the mean field solution will be given elsewhere.

The authors are grateful to W. Helfrich for interesting discussions.
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