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We present and analyze a simple field theory whose partition function sums up all self-avoiding random surfaces with m
internal degrees of freedom (““colors”). The field theory suggests that for m = 1 the critical indices are Ising like, while for m
= 2 the transition falls into the universality class of the U(1) lattice gauge theory and the surfaces proliferate smoothly, the
only phase transition lying at infinite temperature.

It has been recognized some time ago that for a theoretical understanding of microemulsions [1], entropy plays
an important role [2]. Since the droplet surfaces in such emulsions are formed by surfactants, they are basically
self-avoiding. This imposes severe constraints on the configuration sum. It is the purpose of this note to develop a
simple field theory whose partition function correctly counts those configurations. The field theory can be studied
by mean field techniques, and fluctuation corrections are easy to perform. The theory focuses on entropy and
leaves out the important effects of curvature energies, van der Waal’s attraction, and steric repulsion {3]. These
must eventually be included for a comparison with experimental data. We do, however, allow for the possibility of
forming different mutually exclusive walls, which we distinguish by a “color” label.

The partition function to be calculated is

m
Z= 27 ex (—235“54 ) 1
{S"} p 2=1 a a ( )
where {S?} denotes all self-avoiding closed surface configurations of m colors, labeled by a =1, ...,m, 4, is the

surface area of color ¢, and Bas‘” the energy per unit area divided by the thermal energy k7. The counting of all
configurations becomes easiest by considering a simple cubic lattice in D dimensions, with integer coordinates x
and D oriented link vectors i = (0, ..., 1, ..., 0) whose plaquettes i <j can be empty or occupied by a surface ele-
ment of colorsa. Let n;.’. (x) be the corresponding occupation numbers extended to form a symmetric matrix by de-
fining n;.’.(x) = nfi.(x) for i >j. The self-avoiding requirement implies that on plaquettes around a common link,

the sum over all nlf’].(x) must be zero or two. This is assured by the constraint
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The first factor provides for self-avoidance within each color, the second for mutual avoidance of different colors.
For convenience, we shall insert one more redundant condition

I 2 s

x,i<j z,'j(x)=0,1
which is guaranteed already by (2) but will be useful for bringing Z to a more attractive form. If C™ [nl‘.’j] denotes
the product of (2) and (3), the partition function (1) reads
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where we have introduced 8, = exp(—ﬁsur) We now proceed as in our work on self-avoiding random chains [4]
and introduce angular variables ef(x), ; (¢), 8;;() which allow writing the constraint as follows

o = 0 f a6y (x)xH, f i xquda,,(x)exp{i;[eg(x)

x,i,a
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If we call U%(x) = exp[i6] (x)], V;(x) = exp[i6; (x)], V;;(x) = exp[i8;; (x)], the integrand becomes *!
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Mu1t1p1y1ng by 8 ,](x) and summing over all nf; ) =0,1; ;2f(x)=0,2; ;2;;(x) = 0,1yields the partition function
Tdeo ”(x) " d8;(x) " d5;(x)
J H * l‘l a* 21,2
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By expanding the first and last products, the integrals over §; and 5ij can be executed with the simple result

" d6f .
f ) P (1+§)[Uia (x)]z) x[i[<j(1+Za)ﬁqU;’(x)U,4(x+i)U;’(x +j)U]‘~’(x)). (7)
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This is the lattice field theory of self-avoiding random surfaces of m colors expressed in terms of pure phase variables.
It is possible to go over to real fields uf (x) € (—ee, *°) and rewrite Z as

) I (1+ Douerse e rind®).  ®
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This is obviously the same as (8) since under the measure f = du 8 u|, the differentiation éai’-/auZ has the same ef-
fect upon u as U*?2 has upon U in (7). This observation gives rise to the real field theory

z=11 f duf (x) fim “()E (1+-E[a"(x)12)exp( E af(x)u,-”(x))
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+1 After performmg the tr1v1al mampulatlon Ex P 0, (x)[n -7) "’"z‘aj(x)] = Ex, i#] [ef(x +5) +o,‘-’(x)]n,-”]-(x)
=Iyiq [076) +0; fx+iy+ofe+)) +6; (x)]n"(x)
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In this form, the theory has manifest (Z,)™ symmetry (reﬂectlon symmetry of each colored pair u , &f). Due to
the strong truncation effect of the factors IT i [1+ 3 z, of (x) ], however, the full symmetry could be larger than
this.

For m = 1, the partition function (9) differs from the Z, lattice gauge theory by having in the measure of inte-
gratlon,i Zg=_1,1¢% %S =ch a'replaced by 1+ 2oc(x)2 (and, certainly, Bz, by ) *2_This difference is negligible for small
B where the bubble gasis dilute. It becomes quantitatively important only very close to the transition temperature such
that we can estimate 3¢~ th [322 .

In three dimensions, the Z, gauge theory is dually equivalent to the Ising model (the surfaces are the domain
walls) with exp(—28z, ) = th By, i.e.sh 28z, =1/sh 28;;,. Using B[ ing = 02217, gives ﬁcz =0.761 and the
estimate for one-color self-avoiding random surfaces §¢ ~ 0.642. In four dimensions, there is self-duality and 322
= ﬁIsmg 0.44, giving ¢~ 041.

It is useful to realize that the formulation of the field theory (7) is no way unique. We can always introduce an
additional redundant phase variable W;(x) = exp[iv; (¢)], multiply each Uf (x) by W;(x), and integrate over all
v;(x) € (—m, 7). This brings the integrand to the form

I1 (1 +2 ﬁaqué) , (10)
x,l<] a

where the subscript {J stands for the product of elements around each plaquette, for example

UG = UPG)Uf G +DUF (e +DUF ). (1)
The transformed measure of integration is

de" T dy; (x)
0790 50 1 1 Burror)

The Uf (x) integrals have the effect of knitting together the plaquettes of the integrand for equal color. The new
redundant W;(x) integrals do once more the same thing irrespective of color. Since each link is either occupied by
Ul.”(x) and W; (x) or empty, the measure of integration can just as well be taken as

l'll_ (1 + 2 [U,-"*(x)]z) IT +wren, (13)

without changing the result (the mixed products cannot become active). In this way we arrive at the following
general representation

”de”(x) f d%( ) Hz (1 +§>[Ui"*(x)]2) H(l + [w,.*(x)]2) I1 (1 +L:JB,, Ug wD) (14)

x z a 2 x,i<j,a

It is instructive to follow the way in which the integrations build up the different possible random surfaces. By

doing the W; integrations we obtain the constraint c! [nij], forming all possible bubbles of a single color [see (4)],

and the partition function reads

" def(x) nj(x)

" oo O LS ] (1+Zwrer) I (Deoe)". 1s)
{nif(x)=0,l} 2m x,i <j\a

The integrals over U} (x) produce the different colors of the bubbles. We can see this by considering first two ad-

jacent plaquettes

X-i+j XY x4i4

#2 This can be seen directly by executing the « integrations with ch « which force all #(x) to become +1 or —1 only.
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They receive contributions from
I f ,( %)

The integral eliminates the two U;’(x) on the common link x, j and leaves

2 [UF ()] LB, Uf (v — HUL)US e —i + U x — 1) LB, UF U + DUF (e +))UP(x) .

20 63U ~ DUF@UF (6 +D)UF G +1) U e =i +DUf G 1)
For larger surfaces of area 4, this becomes
et 1 vpe, (16)

with the product covering all boundary links collectively denoted by B. The same statement holds for a surface
with corners since an elementary corner ®J> has a contribution from the twelve Uf (x) of the three plaquettes, the
common six which are eliminated by the Uf (x) integrations, giving a factor Z, {33H g U with the product running
again over the boundary links. In general, whenever two open surface pieces meet along several boundary links, the
integrals over Uf (x) ensure the equality of their color such that there is the multiplication rule

Zet Il we Doppe L g Dgare T w an
a B, a B, a B UB,—B|NB,

For closed surfaces, this leaves %, ﬁ,,A . Notice that the result is independent of the genus of the surface. For, if
there is a handle, it may be obtained by rolling up a tube from an open surface. The integrations at the junctures
merely ensure equality of the colors and give no new §, factors. Therefore, also a tube gives the contnbutlon (16).
This, in turn, may be attached to another surface. If the boundary links match, the resultis Ba . Thus, if we let
b enumerate the individual bubbles of area A(b) in the ensemble, we obtain the partition functlon

- A
Z‘{é;}l,:l(?ﬁa())- (18)
If all colors have equal surface energy, this simplifies to

Z= 27 mnlSl gA |
{s} (19)
where n[S] is the number of bubbles and A4 their total area.

We have gone through this discussion in detail, since it illustrates an important property of representations (14),
(15): Once the ensemble of self-avoiding bubbles is formed by the W; integrations, there is ample freedom of
choosing different statistical weights for the bubbles, Up to now, we have allowed only for different colors. There
is, however, no problem in attributing different properties to the bubbles. Of particular practical interest will be
the curvature energies mentioned in the beginning which will be discussed in detail elsewhere. In this note we shall
confine ourselves to illustrating this freedom by replacing the integrals over U, in (15) by

f d92( ) H [BU U (x + DU (x +7)U () + .0 )55 0

This replacement is particularly interesting since it produces a theory possessing manifest U(1) local gauge in-
variance, just as electrodynamics **: For each x, i, we can multiply U;(x) by phases U;(x) = exp[—ip(x)] U; (x)
X exp[ip(x +#)]. This transformation can be absorbed into the angles 6, by adding the lattice gradient

*+3 Quite similar theories have recently begun [5] playing an important role in the theory of elementary particles [5].
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0;(x) > 0,(x) + V;p(x) , (21

and has therefore no effect upon the integrations (20). Let us perform these first on two adjacent plaquettes. They
are accompanied by two factors of the type (20)

[T [ D g6 -nU U -1 +)07 6 - D+l @ a + DU 6+ DU} @ recl . @)
xjJ  2m

The common link x, j is associated with phases U (x) U]* (x) and U]* (x)U;(x) whose integration leaves
Ui — DU (x)U;(x + DU x +))US(x —i +j)U]-*(x —i)+c.c.

Diagramatically, the procedure may be represented as follows
(-)-(0) (3 7) -

Each U;(x) amounts to a current flowing in from x along the link i, with complex conjugation reversing the direc-
tion. From this representation it is obvious that every closed surface with no handles can be covered twice by small
current loops. Each plaquette contributes a factor 8, and the total weight is 264 (A4 = area of bubble). By going
through the same discussion as above we can convince ourselves that the result is unaffected by the presence of
handles. Indeed, the situation is precisely the same as for surfaces of two colors, the role of the colors being played
by the two orientations of the loops.

Thus we conclude that the gauge invariant theory

T ody(x) ~ d6;(x)
2=l 5 =~

-n

1 g+ i

X I'l< {1+ BLU; ) Uy (x + DU G + U} () + c.c.] W} (23)
x,i<j

represents an ensemble of self-avoiding random surfaces of two colors. We can bring this to yet another form by
treating Was u in (8) and inserting dummy operators of the type

0 ioo
d
1=fdu f 2—:iexp[—a(u—U)]:

—joo

07 . 7 doy(x) dof ()
Z= E “£ du; (x) du; (x) ch_lz _j;w i

- 192
E ~fm oy 95 0, ) 11 (1 i P )

xexp(~5 2 fa @)+ @) [T 1o(ioyo))

X H< {1+ Blu; GJu; e + Duj (x +j)u;‘(x) teclwgl. 29
x,i<j

We now replace u; »u;/w;, & > o;w; and perform the w; integrals. This leaves only the first two terms of the
Bessel function and we arrive at
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> da () dof (x)

Z= H, [ duyx) duf ) exp (—% xZ:/ o] (o) (x) + a,.(x)u;*(x)])

oo (2mi)?
x I1 11+ H1a,00012] H< AL+ Bl e )uy (x + Dy (6 + g () +ce ) (25)
x,! x,1<}

This is an important result. It shows that the self-avoiding surfaces of two colors are a subset of graphs of the U(1)
lattice gauge theory whose field theory ** would be the same as (25), except with (1 + 3 |a,-|2) replaced by Jy(loyl)
{1 +Blu;(x)...u} (x) + c.c.]} by the exponential exp { f[u;(x) .. .u;.'(x) +¢.c.]}. The U(1) lattice gauge theory is
equivalent to a éoulomb gas of magnetic monopoles [7]. It has Debye screening for all § and no phase transition ex-
cept at § = oo, There is permanent confinement of electric charges. This leads us to conclude that two different
colors prevent also self-avoiding random surfaces from having a phase transition. Their number does increase at a
certain temperature, but without forming infinite bubble areas.

The authors are grateful to W. Helfrich for many inspiring discussions.

*# For a review see ref. [6].
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