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We show that the partition function of an ensemble of self-avoiding random loops Z = Zio0ps plength can be reexpressed
as a local lattice model involving Ising spins. We present an approximation evaluation for D = 2 and large § where the loops
are prolific, and compare the results with Monte Carlo data obtained from a direct summation of random loops.

In two recent notes we have developed a technique by which the partition function of ensembles of self-avoid-
ing random loops [1] or surfaces [2], of m colors, can be transformed into a variety of local lattice models involv-
ing only next-neighbor interactions. These models can be converted into simple field theories which have led to an
understanding of the universality class of the corresponding second-order phase transitions. In contrast to earlier
lattice models, which involved n-component spins with # — 0 [3,4] our models do not contain any forbidden line
elements (such as “loops”, involving a single link, or “single site walks” [4], which were hoped not to modify the
universality class). Apart from this, they have the decisive advantage that they allow for an approximate evaluation
of the partition function via the usual methods (strong coupling expansion for small 8, mean field plus loop correc-
tions for large £).

Our models do, however, have an unesthetic feature. It consists in the fact that the integrand in the partition
function is not real. This is an obstacle to a direct Monte Carlo study of the models. It is the purpose of this note
to present and analyze a better representation in terms of simple Ising spins, in which the integrand is real and posi-
tive for a range of § which starts with zero and reaches beyond the phase transition, such that the transition region

becomes accessible to simulations.
Starting point is the partition function of self-avoiding random loops on a simple cubic lattice as developed in

ref, [1] ¥,

z=11 [avee) (1+ U2 [1 (1 + pUe)vee +0)] 1)
X X,1

where U(x) = ¢17*) are pure phases and [ dU(x)= [ fﬂ dy(x)/2n. It is easy to see [1] that expanding Z in a power

series in B gives the correct loop sum with a Boltzmann factor L = e—¢L/ T where € is the activation energy per
link and L the total number of links in the loop ensemble. Let us factorize the second product as follows:

* Work supported in part by Deutsche Forschungsgemeinschaft under Grant No. K1156/10-1.
#1 All our considerations are valid on any lattice in which case i runs through ¢ neighbors where q is the coordination number.
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1T 11+ pueuts +0) = H 2 [1+/Bs GV +/Bs; () UGx +1)]

si(x)=+1
=L nm 2 [1 +/Bs;,c)UE)[1 ++/Bs;(x — P Ux)] . )

2DN 4 i s;(e)=+1
The Ising spin variables s; (x) are associated with the oriented links / emerging from the sites x, the variables s; (x
— i) with those pointing towards x. It will be useful to redefine them as s_;(x). Performing the product over x,
we may keep only terms U” (x) with n = 0, 2 since higher powers of U(x) (as well as all odd ones) do not survive
the integrations in (1). Hence, under the integrand, the product (2) can be replaced by

L = )II ( 2 )
1+ pUx E s:(x)s;(x) ), 3
2DN(U- sime1) x BUCx) Rt 1 (X)s;(x) 3
itj
such that Z becomes
D 2

z=—l—i 2 l_I(1+ﬁ Z) s(x)s(x))=—l; 2 n[1+%(t'2 si(X)) —ﬁDJ- @)

{s;(x)=£1} x {six)=+1} x

z;#]

The mechanism, by which (4) produces the self-avoiding random loops is obvious: The produects s;(x)s; (x) attribute
to each neighboring set of links, a couple of “‘semi-loop” elements, 2D (2D — 1)/2 for each site. The sum over
s;(x) = 1 gives a contribution only if a link is empty or occupied by precisely two “semi-loop” elements (see fig.
1) The “semi-loop” character of s;(x) reflects the fact that the Ising spin Vanables have produced a kind of

“square root” of the integrand (2) (This is similar to the way in which spin 3 arises via Dirac’s square root of the
Klein—Gordon hamiltonian.) The individual factors in Z

D

2
z(x)-1+'8(;l4:/ s(x)) ) ()

are all real. Moreover, they are positive for
g<DL . ©)

In ref. [1] we have listed the critical values of fin D = 2, 3,4, 5 ... dimensions and found the values 0.414,0.218,
0.1488,0.1135 (=1/2D) respectively. Since 1/D is equal to 0.5,0.333,0.25, 0.2, in these cases, we expect that the
new partition function

Fig. 1. Section of the way a self-avoiding loop is composed of
“semi-loop” elements, in the partition function.
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1
Z=— Z H z(x 7
DN (o6hoe1} x ) \ Q)
can comfortably be interpreted in terms of probabilities, starting from low § up to a little piece above the phase
transition of loop proliferation. In detail, this goes as follows: Consider the 222 spin configurations s, ;(x)==*1 as-

sociated with every site x. These can be grouped into classes characterized by a common z(x). Since z (x} depends

only on (23,:1 s,—(x))2 /4 =n? we can decompose
D D
20)= 20 2, P)= 2t (1+26n% — D)P, (), | ®)
where
1+ €:5;(x) (1 + e-s~(x))
P ()= i 7%
n(x) e,-(x%il tzl,lf ( 2 ) 2 ©)

(Eth=1 & (x))? [4=n> #

are the projection operators into the spin configurations of common (Z; s; (x))?/4 = n?. For example, if D = 2,
there are the following classes of spin configurations of n =0, 1, 2, respectively:

H——) t—t—, A, ——t, —+—t, (92)
-, A+, At e, A At = -t (9b)
R 5 — O
with

Py= %6 [QA+s)A+s)1—s_ ML —s_y)+ (1 +s)(1— sHL+s_)(1—s_p) +{1+s51)X1 —s)(1 —s_)(1+s_3)
(1= sy )1 — 5oL +s_ A +5_5)+ (1 — sy XA +5)(1 —s_y X1 +5_5)

+(1+s)1—s)A+s_ X1 —s_5)] = ﬁ (6 -2 E 5;8 + 6s1s2s_1s_2) , (10a)
+], ]
i#]

Pr=tel(1+s)(1 500 +s (1 —5_p)+ (A +s )1 +s)1 — sy NI +5_p)+ (1 +5; 1 —s5)(1 +5_ X1+s_5)
+(L—s)(1+s)A+s_ (I +s_5)+(1+ SPH1—8)A —s X1 —s_5)+ (1 —57)A +5)1 —s_( —5_2)
+(1 =5 —8)(1 +5_ (L —5_2)+ (1 —57)(1 —55)(0 —s_(1 +5_5)] =3(1 —51555_15_5) , (10b)

Py =611 +s)(1 +5)(1+5_1)(1 +5_2)+ (1 —s)( —s)(1 =5 )(1 —5_5)]

= 113(2 +2 +§] Sl'Sj + 2S132S__1S_2) , (IOC)
i#f
having the eigenvalues I on their proper class and O onthe others. Hence X ’lz)= 0P, =1land
Panzﬁnum’ (11)

which shows that they are truly projection operators. We can therefore write

z(x)= exp(E log(l +26n% — gD + ie)Pn(x)), , (12)
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if B is such that all eigenvalues 1 + 28n2 — 8D are non-zero and
z(x)= [1 — P, (x)] exp( E log(1+2pn? — D +ie)PH(x)) , (13)
n¥m

if = 1/(D — 2m?) forsomem =1, ..., D. For § < 1/D the representation (12) has a proper probability interpreta-
tion and can be employed for Monte Carlo simulations.

Let us make use of the new representation (4) and calculate Z for the case of D = 2 dimensions. For large 8, the
decomposition (12) suggests a simple approximation of keeping only the two n = D contributions in (7) [all 5;(x)
up or down]. This gives

Z~ 2y = (2/2PM)[(1 +28D2 — D)}V . (14)
From this we calculate the total loop length per site (=internal energy per site)

O=(LYN=u=N"1(Bd/d8)log Z ~ BD(2D — 1)/[1 + D (2D — 1)] , (15)
and the variance of the length per site (=specific heat per site)
NIUL?Y —(LP)=c= N7 (Bd/dB)? log Z~ D(2D - 1)/[1 + DD - 1)]2 . (16)

In the limit of large 8, (/) tends to 1, as it should do exactly, due to self-avoidance. In the polymer interpretation,
however, this is an unphysical limit since the maximal value of §=e—¢/T is unity. At that maximal value, our
simple approximation gives /) ~ 6/7 ~ 0.857 which agrees quite well with the Monte Carlo number 0.8,

It is possible to develop a correction procedure which includes the effects of the eigenvalues z,, Let us split
P, (x) into new projections P, ,(x) and P_, (x), which project into states with 72+, 5;(x)=n>0 and 72,, ;8;(x)
= —n <0, respectively. If 7, denotes the ratios7,, =z,/z;, =r_,, we can expand the partition function as follows:

z=-L o2 - aD)N(H ) )(H [Ppx) + P_p()]

2DN x,i si(x)=¢1
D-1

+ 2 1 pyw+r_pel 2 rPu)
y x4y tn=1

D-1 D-1
+s L2 T pyewy+pP_pe)] 21 20 PP, @)+ ) . (17)
Y#z xEY,#2 tn=1 tm=1
For D = 2, the ratios r,, are displayed in table 1. We see that down to § ~ 8, ~ 0.414 they are sufficiently small
such as to expect a reasonable convergence of the expression. Notice that even though (/) had the correct § — ¢
limit, Z, itself does not since the r,,’s remain finite.

Consider now the first correction to Zy
D-1

Zl=5_27(1+2ﬁD2_ﬁD)N(H )D) )Z} I (pD(x)+pD(x))E roP, (¥).

x,i si(x)=x1/ y x+#y
In order that the product of Pp’s be non-zero, all spins around each site, except for y, have to be 1 or —1. But then

n must also be £D and the sum over n = —(D — 1), ..., (D — 1) gives no contribution. Hence Z; = 0.
The second correction does give a non-zego contribution. If all spins are up and one s;(x) is down, there is a

contribution of n = (D — 1) from that link and

1
2y =~y (1 + 2607 — D)NDINGS_ | =ZoDNh_; . o
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Table 1
The coefficients of our expansion (17).

D FD—j, -y 11 B> o0 g=1 B~ Bc
1-28 1 1 11

2 R -3,0 — 3,7 0.05, 0.29
1-38, 1-8 1+58 IO S W ~3.0,3 0.08, 0.18, 0.49

3 1+158 1+158 1+156 5 °T5.3 Lided T
1-48,1—-28 1+48 1+148 1 1 11 3 1 5 15

4 1+285 1+285 1+285 1+ 28 TN —%6, —29, 29> 35 0.08,0.14, 0.31, 0.6

The third correction comes from two adjacent spins being flipped with the three sites, on which they lie, having
n=D — 1 at the ends, and n = D — 2 at the joint. This gives

Z3=ZysN2D 2D~ 1)rp_i7p - (19

The fourth correction requires a more tedious counting. One trivial contnbutlon is the disconnected one, in
which two distant links are occupied by a flipped spin. The weight is rD _; and the multiplicities are NVD for the
first link and ND — 1 — 2(2D — 1) for the second, since it can lie neither on top of the first (—1) nor join with
one of the end points [-2(2D — 1)]. With a factor 1, to avoid double counting, this gives

zZV =72, iND@D — 4D + 1)}, . (20)

A further contribution comes from connected graphs *2 ¢} which contribute rlz) 17 12) ,- Starting with 2NVD links,
we can attach (2D — 1) links, With a factor 3 we have

zZ® =z 3N2D@D - 1Yrh_irh 5. 1)

If the three links of this contribution form the boundary of open plaquette __], it can be closed by a flipped spin
to L], to the same order giving

1
z@=ZNDO - 1T} . f(22)
A fourth contribution comes from the graphs in which three links with flipped spins have one common site 2,

ZW =z NIDO - 1D - 11y, (23)

Finally, in D = 2 dimensions, there is an exceptional contribution,i.e. =+ . If the background is occupied by Pp), the
central site contains P_p, withr_p = 1 and one has a contribution of fourrp _;:

Z)=Zybp ) Nrp | . (24)
Collecting all these terms we arrive at
Zy=ZGN(3DIND - 4D+ yrfy_ +D@D - Y3 _ /A, +3D@ - D@D - )rd_irp_,

+%D(D— 1)"2)_2 +5D,2’$—1}’ (2%)
from which we obtain the free energy
—Bf=N"YlogZ=—B(fy +tf+f3tfs+...), (26)

*2 Full lines denote links with flipped spins, dotted lines have unflipped spins.
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Fig. 2. The total Iength per site (=internal energy) as a func- Fig. 3. The length fluctuation per site (= specific heat) as a func-
tion of 8= e~¢/T'in comparison with the Monte Carlo data tion of g=¢~€/T in comparison with the Monte Carlo data of
of ref. [S}. ref. [5].

with
—Bfy=—Dlog2+log(1 +26D? — D), —Bfy=Dr} ,, —ff3=DQD- D3 it oo

—Bfy=—3D(4D — ri_ | +D@D —1)rh_ 3, +3D(D- 2D~} (7p 4

+3D(D = Ffy_,+8p, 515 (27)

From this one can calculate {I) and ((Al)?).

The results are displayed in figs. 2 and 3 and compared with data from Monte Carlo simulation on 5 X 5 lat-
tices. We see that the agreement is quite good, if the size dependence of the simulations is extrapolated towards
infinite size. For higher dimensions, the convergence of the expansion (17) slows down rapidly and other analytic
methods have to be used. These will be presented elsewhere.
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