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I Introduction

One of the important outstanding questions in unified gauge
theories of weak and electromagnetic interactions is the physical
nature of the Higgs particles required by renormalization. Until
recently, ideas have been guided by the first historical appearance
of such fields in the context of superconductivity. In 1934, Gorter
and Casimir] first proposed the use of a space time independent

order parameter for the description of the temperature behavior of

the specific heat in the superconductive phase transition. In 1937,

Landau2 made the order parameter a local order field by introducing

gradient terms permitting the study of spatial fluctuations. This
theory has the characteristic that as the temperature of the system
passes below a certain temperature Tc’ the mass term which stabi-
lizes fluctuations changes sign, thereby leading to a non-vanishing
expectation value <Q>E(€’*0 of the order field. There is a second

order phase transition to an ordered phase.

If the order field.q%k):is complex and the energy depends only
on Q?ﬁ?' , there are two degenerate fluctuations above Tc' Below
TC there is the phenomenon of spontaneous symmetry breakdown: The

size of the order parameter has massive, the phase, however, has
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long-range massless fluctuations which join smoothly to symmetry
transformations in the limit E-’O. These are called Nambu-Goldstone
bosons. In 1950, finally, Ginzburg and Landau3 took this theory

and coupled it to a vector potential in a gauge invariant way. In
this way they arrived at the prototype of present models of unified
gauge theories. These are characterized by two properties. First,

due to the covariant coupling
.
((’é —\'ié)‘?( (1)

the ordered phase generates a photon mass term which leads to a
finite magnetic penetration depth (Meissner effectA). Simultaneously,
the gauge invariance of the coupling allows for the removal of the
phase fluctuations by a gauge transformation and absorb them com-—
pletely in the vector field A. There they become part of the massive
gauge field fluctuations required by rotational symmetry (Higgs
effect)s. The Meissner-Higgs effect has turmed out to be crucial

for generating a short range weak interaction without destroying

the renormalizability of long-range gauge theories6

The remaining size fluctuations of the order field are presently
referred to as Higgs particles. Nine years after Ginzburg and
Landau, Gorkov7 was able to explain the order field microscopically
as a field of bound states of pairs of electrons (Cooper pairs).
Inspired by this it is widely believed that the Higgs particles in
unified gauge theories might be bound states of some more fundamental

underlying microscopic constituents (e.g. technicolor quarks).

It is the purpose of this lecture to draw attention to another
type of Higgs particles which exist in a variety of many-body systems
and which could, in fact, represent the correct explanation for the
origin of these fields in the context of unified theories of weak
and electromagnetic interactions. These Higgs fields appear naturally
in many non-linear problems in which the non-linearity leads to
line~like singular, or almost singular, field configurations. They

have physical properties opposite to the order field and are there-
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fore called disorder fields. In contrast to order fields, they

acquire non-vanishing expectation as the temperature passes above

a certain critical value. We are far from being able to describe
their specific role in the context of non-abelian gauge theories.

In abelian gauge theories, however, they emerge quite naturally as

a way of parametrizing global group excitations. Since such ex-
citations are known to be of extreme importance also in non-abelian
lattice gauge theories it is suggested that the Higgs fields appearing

in unified theories are nothing but a convenient way of parametrizing

non-linear line-like singular field configurations of a pure gauge
theory. The development presented in this chapter will be completely
parallel to recent discussions for crystalsS, pion condensatesg,

and magnetic superconductorslo. In all systems, line-like, almost
singular field configurations are known under the name of defect
lines. They play an important role in understanding fluctuation

properties and phase transitions.

IT Lattice Gauge Theory

. b e . 1
Let us recall Wilson's definition 1 of a gauge theory on a
simple, cubic lattice. If x denotes the discrete lattice sizes
LY
and i the oriented link going from x to the next neighbor along the

. A . . . .
possible X, axes, the partition function 1s given by

d, .
Z =T \dUb) e ity o

where G{Ll( is the invariant group measure and (iﬁi a product of

four group elements, one for every link on a plaquette formed by

LS A AL A -4

o
uij = Ut ul-(x*.;') uj(gﬂ)uj*(y (3)
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The number alL is a conventional factor denoting the dimensionality

of the u‘- matrices. For small field fluctuations,u;'\-'f can be

parametrized in terms of dc"tc matrices A, as
‘ag A 60 . ,
(A—{(.?.f) =€ = 1 -£ {&? A((:') + lz(id%) Afe) +. .

and one finds the limit A, — o

U Ut ) = 14 raq (AisA;) 4 Llag) (A + Af)

2 2
t A% Dk +(2g) Ar At

such that

'26. u"ju' ( = 'Ji.@f (5) uj. (3"_‘!) _uj(?s) u‘-e(-{-j))
(W) - Wheuey) @

y = : w z _A .
- —_?(__a 1 E: .::—.%1 X {Q{AJ. aJA\' -hg(;\i‘,ﬂ,.j]}

thus arriving at the conventional continuum theory in D dimensions

172 D 2

L =T gdA(.Qc) e

bl‘

_..m
if one identifies

FB = G‘c. 1_ (6)

74D 2
a

[

and a as the lattice spacing. In other words, the temperature
-\

TE? in such a description is proportional to the square of the

) . A;
coupling constant. In the case of an abelian theory u_(. =@ ‘15
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with Ai=rea1 and the partition function becomes

) - Z (- cos(. A- = 7oA
.Z‘-,—T dﬁ;_(gg)@ {st.«j @‘ ) V)A‘)) -

U 2w 20

YA Al'/zs’) = Ai-(ggﬂ:l - A']Q_cJ (8)

is defined as the lattice derivative.

The important feature which distinguishes this lattice gauge
theory from the small field limit (5) is the physical spectrum.
In (5), there are only non-interacting photon fields Ai' In (7)
there are, in addition, global group excitations which in the
following will be called defects. They arise from the possibility
that if the difference of two adjacent Ai fields V"Af{z‘)zﬁjd‘*j)"‘ie‘]
changes by an integer multiple of 2| , the cosine function is

invariant and the energy is unchanged.

Defects have an important impact upon the statistical mechanics
of the system due to their high entropy. This is why they lead to
a drastic change of thermodynamic properties at a certain critical
value Gk'. For small GB , i.e. in the hot phase, they proliferate

and cause a phase transition due to the well-known relation

F= E-T5

which shows the importance of configurations of high entropy at

high temperature even if the energy is large.

The point we would now like to make is that starting from a
pure gauge theory, the proliferation of these defects can most
easily be classified by rewriting the theory as amother gauge theory

involving the dual field strength coupled minimally to complex
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Higgs fields. The Higgs field accounts for the random ensemble of
closed defect lines. For T)Tc, it takes a non-vanishing expectation.

Thus it 1is properly a disorder field in the sense defined above.

Since the field energy is dual to the original one, the ensemble
of defect lines is nothing but the world lines of gas of magnetic
monopoles. It is the magnetic analogue of Debye screening that in
this gas color electric flux lines are compressed into small tubes
thereby leading to a linear potential between color electric quarks.
In order to develop this Higgs field theory, it is most convenient
to approximate the periodic energy /[—(os(vt.gi—vi,a,‘) by another
expression which has the same periodicity and shape around the
minima of the energy, where the configurations are most probable,
and introduces an error only where the energy is large, i.e. for
improbable configurations. This approximation was invented by
Villain and is excellent for not too small values of GB 12. He
observed that for any configuration /t;(_)f) near the minimum of the
energy there is always a configuration of integer numbers f?th)

such that

2

A= cos (TA;09-RAe0) ~ & (VA VA go-arm)

(9)
Thus, if we perform this replacement in the partition function and
sum over all (lq{f) we introduce little error since the wrong
values of ﬂ;\- (x) are strongly suppressed by a high energy. In

this way, Villain arrived at a partition function of the form
x — - % Z (VJAB’VJ'A; "?N'fl«'F;
_— R X e
ZaZ =T “ﬁ,:_@z e =9 oy
| "

This has the great advantage that the exponent is quadratic in all
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fluctuating wvariables. Therefore, we can introduce an antisyvmmetric

auxiliary field tensor r-:“ and rewrite the partition functien in

the J:'c:srmu’I'!+

2. dFi.;fK]'
= PAETTY (1)

The sum over rIQQE]taﬂ be performed using Poisson's formula

e© —Z2r{F

- R:Z 8{/}____?) (12}

=-oo f:-m

which squeezes the field F_:-'j onto the integers -S:ﬁ . If we now
execute the ﬂi integrals, the integer numbers ~gh are seen to have

no lattice divergence. Hence

g- d ‘g'rfzfﬁd.;-?iﬁramtjj

= Z % %( o
'{-f.-, w3 ﬁf E: 'Fj)

{ 500y

(13)

il:

In order to arrive at this result we have used the lattice analogue

i tial int tio Y, = v
of partial integrati ni ZE ‘ﬁff} ";.r: hf’fj = hé ('i?l—ta'. b hff};
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where

v

VF%C.K) = X - &k-) (14)

Because of the lattice divergence, we can rewrite ‘Fq as a curl of

an integer valued lattice vector potential which is dual to Ai

x
S
'Fq(“’_(): Zt'j‘cQVh. QL({‘:—-E) (15)

N ~ TS
a decomposition which is gauge invariant under Qe @-—7 Qc(v'j)'fV(AQr)

In this way we arrive at

(16)

where E&y,o is some gauge fixing which is compatible with the inte-

[ g
ger valuedness of Qp 5 N is the total number of lattice sites, and

(@ ~ [N
£ i = Yoo -Viap = Ziut T g (17)

is the dual field strength of JEii .

Since we are not used to thinking in terms of integer fields it
is advantageous to allow EiQﬁ to be continuous variables but

enforce their integer values via one more application of Poisson's
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formula (12). Then '25 can be written as

'{ Q(kj)’ z—ldo
The E;éfz‘ restriction has to be inserted to account for the
( (AN

gauge invariance of Fﬂl . This restriction implies that the sum
over integer Qcéd configurations

(19)

——

2 S,
V:e: o
{9 §

can be decomposed into the sum over closed loops in which each line
carries the number Q;(x)=:1 . It is this sum which represents the
additional degree of fgéedom due to the line-like defects in the
lattice gauge theory. The boupling (19) is the same as the minimal
coupling of an electric current. Here, however, the field Ai is

dual such that the currents are the world lines of magnetic monopoles
with respect to the Ai fields.

If the A fields are integrated out, the partition function

becomes 3, 14

~ %Lﬂr"Z et O o)
- 3Nf, Xk

Z (l‘fé Z %§€ ! (20)
AL §
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where

i

O = D € “; A @20
=

=2 e L,
e k< |
is the lattice version of the Coulomb potential. Eq. (20) is

recognized as the sum over Biot-Savart type of energies of the

magnetic current loops. It is convenient to remove the large value

at x=o and rewrite

n_)(i{) = fuf(r) + ’O(g) 53‘((9 (22)

0(9) R '55 and

where

X (23)
( _ ol
VGl =Y e Lo -4 Vo)

-

is a potential which vanishes at x=o. Then (20) becomes

— 3N/

Z :@T&> Z %v"‘z' o (24)
flﬂgipj)lj ¢

BT > L) Vs i) - Buntonl o
é 2 > x/ ~ - . X ¢
- I—-I‘ [

The first term can again be rewritten in the form (18) and
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becomes 2
, z,,Z R/
~ l(!
A = (r@ Yr %(VIAE)C
Zep 2! 2"7’
2 (25)
—~
- Burtoe)Z O tmiS g A
R :',C
7 %4.,¢
{l )y ‘
2
The prime of the field strength denotes the fact that T:: in

{
momentum space is multiplied by (}—‘”ahf[)correspondlng go the
replacement 'L?(‘k)——"’b(‘x)_ This expression has the advantage that it
displays the suppression of magnetic current loops of higher current
strength due to the self-interaction. Since the vector potential

it(K) propagates with (23), the residual interactions have no

self-energy due to

<$r/(6,5)1 V=0 (26)

We are now ready to show that (25) can be rewritten as a Higgs
like disorder field theory representing the grand-canonical ensemble

in the original pure gauge theory!

III Higgs Disorder Fields

The derivation proceeds in two steps. First, we follow Peskin]4
and observe that the sum over closed Q( loops in (25) is
equivalent to an XY model in an external vector potential Ai, by

. . s . 1
which we mean the following partition function

£ 2 an(Vix -ork
Z - rS A o .’I'"an( ¥ &)(27)

loops
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The auxiliary temperature t of this model is to be identified with

the factor of the Jz—.z Qiz term as follows
PN

(28)

E= @B ynto

The proof is quite simple: Using Villain's approximation, (27)

becomes

Following the same arguments as after (10) we can rewrite this as

A " o0
1 30
7 AT\ AL T\ Z

‘w; ':(‘( S x ™

o fae’ X2y Ty

erp - 4 ZLHZ L g-aeirnf

Summing over m((_’f) forces L\- to be integers z‘- , due to (12), and

integrating out \((x) we find %“7' , just as in (I3).
. - tli o
Thus we arrive at fZ 2 _
— Seagt
"3“[1 Z et 2__

X e
I) . - (1)
N( % 18 oe

"'o
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which is indeed the loop sum in (25), after identifying (28). But
there is no problem in turning (27) into a complex Higgs like field

O .
theory., For Ai=0 we can wrilte

cos V*'Y :Z cos ( \g{xt_Z)wa())
¢ > 1

! !
(32)

= 2 r“” Y1) es7 g ls) +5mn \(({5—@) Stn Y (x) _:S

-

Lol

=5 S @ (+7:) %0

<A
Xt

where
§ (svs) = (a,_-n X(x), stn xx) )

Moreover, using

2{ QOGS =3 5 < (x) V: Sale) — %(ga(.’.‘) Salid
x, XL " )

-5 7 SOTYIGE = 33 %0 (4E)-%w *aed %

(33)
¥
=1 2 5, 6)V-V: Satx
Z 3.({{ Al

we can rewrite (27) as

»e
5% %;; <5aéf)(14'%?‘%‘%1620:)5145)

. T
kel &/ gd\g(x) (34)
4, ~THYWe
lops  x -w 2T
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where D=4 is the space dimensionality.

Now we introduce a two component real auxiliary field Q?q and

rewrite

Ceo
h ~ le}- TFV' SSCKQ&C{QZZ a&ﬁf})
2 loops (HZ hp) Tr_@ YD/ -E—.S

(35)

-\
&g {'[ﬁ) é, X € 6)( l-('\z'é%/zv) box’) €0y +§ saceﬁj

The integration over (x) gives I ,c?( ) . In order to remove
- (&)

the determinantal factor it is useful to go to fields

(36)

Malx) = > (+ 2 V;/w) Gax) @6)
! ¢

such that
D =0
=
7 ~ | ananT
(oops (37)
YDl

e {510 (e Z e (ool

where we have gone to complex field notation. The field “N(x)
may be considered as the second quantized field version of the

random loops represented in (31) (at Ai=o)(1n the euclidean version).

Close to a phase transition, we can expand the exponent in

powers of the field (\F and include only the lowest gradient
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terms

TP e g 5 g (W= v TG

(39)

o™
We can now include the coupling to the gauge field Ai by simply

replacing the derivatives by their covariant versions

— 2 A(k) (39)
VN 2 D Mo = e ~™N)

{7.‘ M6 - 6; No) = M) —e 20 il ~-)

As a result we find for the original pure electric u“) lattice

gauge theory a magnetic U(") lattice gauge theory with Higgs fields.

[ze' * 7 WrDfe (40)

op 4-dn 2 - %‘( LD (2 ()

It is now straightforward to see that there is a phase transition

t:D (41)
D

For ~k(:D , 1.e. T7“; ='-H—£Qb)’ which corresponds to strong

coupling, the monopole disorder proliferates leading to a non-

vanishing ’\kﬁ:o . As a consequence of the minimal coupling, which
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in the long wavelength limit reduces to the form (1), the dual
vector potential becomes massive and the color electric flux is
screened, implying linear potentials and confinement. For & 5D
i.e. T<Tc (weak coupling) there are no monopoles and the forces
are Coulomb like. It is gratifying to note that this temperature

will not be shifted by seagull diagrams

RN = Ty @

. (
since the propagator AD (L() ensures the absence of closed photon
loops (recall (26)).

Up to now, all operations have been performed on a D dimensional
lattice whose spacing @ was normalized to unity. In order to extract
the consequences for a field theory on a four dimensional continuous
space-time we have to reintroduce the parameter a at the appropriate
places and take the limit 3 = Q . Then lattice derivatives go over
into proper derivatives as V‘\f._) a’a’\-"‘ In order to arrive at
the conventional gradient term Sd“x"a‘ﬂfl we have to renormalize

the field by a factor a4 i.e. we have to replace N{’-—) |2I-(-'a'\k
Then C"-{’-b'@a"’&?lﬂand the expansion (38) becomes in four dimensions

- (% {gz(’c-o)ﬁl" R IR e @

If the fields are to have a finite mass, say M , we have to require

that £t=D approaches zero with g as

T 2

£-p = aZ M~ = o (44)

Thus the continuum limit lies automatically in the critical regime.



Physically, this situation may be described as follows: Critical
fluctuations are characterized by a very large coherence length as
compared with the lattice spacing. But then, in the limit of zero
lattice spacing 8, any finite wavelength ﬁA-1 is extremely long as
compared with respect to @& .such that it is critical in the
underlying infinitesimally fine lattice. We can convince ourselves
that indeed all higher terms which are present in the exponent of
(37) disapﬁear in this continuum limit: Every higher power of “+

carries an extra factor a and so does every further gradienta‘- .

Thus as announced in the introduction, starting from a pure
gauge theory we have indeed arrived, by purely formal manipulation,
at another dual gauge theory coupled to Higgs fields. The conclusions

of this observation may be far reaching:

IV Conclusion

The discussion in this work was based on abelian gauge theory
on the lattice. The question arises as to what we can learn from
this as far as non-abelian theories are concerned. The basic lesson
to be extracted from the many Monte Carlo computer calculations is
that abelian and non-abelian theories are both characterized by the
proliferation of monopoles above a certain value of the coupling.
This is a consequence of global group excitations which are present
in the compact abelian theory as well as the non-abelian theory.
The difference between the two arises only in the weak coupling
limit. While in the LI(1) theory for D 3, there is a value ﬁéc
above which there are no more monopoles, and therefore no confinement,
the non-abelian version has no phase transition and remains confining
for arbitrarily large @7 . We therefore are led to conjecture that
whatever we derive in the abelian theory for strong coupling should

be valid in the non-abelian theory also for weak coupling. In fact,
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this 1s necessary 1f we want to use information from lattice cal-
culations and extract from them statements about the continuum limit
of the theory. Assuming that this can be done we arrive at the
following exciting hypothesis15 concerning the structure of strong
and weak and electromagnetic interactions. The strong interactions

are a pure gauge theory involving 8 colored gluons with a Lagrangian

Z F“ . The weak interactions are also a pure gauge
hidk L, F—‘
theory w1th 3 flavored vector mesons W E L{g o Y .Contrary
W

to the strong interactions, the action involves tfle dual tensor
T~ of the fields VV; . The coupling A is much

larger than %5 , opposite to what one would naively think. Due

to the-weakness of As > there are very few color magnetic monopoles

in the ground state which lead to color electric confinement but

allow for a large energy range where perturbation theory is

applicable.

The weak interactions, on the other hand, are characterized by
a strong ¢§w . Therefore there exists a high '"monopole" density
of the dual theory which are flavor electric particles. They are
most conveniently described by Higgs fields. These have a non-zero
vacuum expectation such that the Wi fields are massive. Due to the
largeness of ‘3“ , the world lies deeply in the Higgs phase and
perturbation theory with massless W's is impossible up to very high
energies. This is observed as the short range property of weak
interactions. At the same time, the flavor electric interaction
between Higgs particles is very weak. This picture 1s quite
different from current hypotheses of unifying weak, electromagnetic,
and strong interactions via a single, multicomponent non-abelian

gauge theory. 1In our case the unified theory has the generic form

— o T (\—D( v
Z = 1 . 2 E_ —~+ _L 2 .
Hqs Ty ’ “Mu VLS.
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with small and large R - The quarks are electric sources for
a % : of
ﬁt; and magnetlc ones for ﬁ!‘ . Certainly, many details remain to

be investigated.

It goes without saying that the field theory on the lattice with
the partition function (11) can also form the basis for studying
real magnetic monopoles, if the single event discovered recently by
Cabrera finds successors. In this case the field A is the usual
electromagnetic one which is coupled immediately to electroms. The
dual version (40) can be seen as a possible generalization of gquantum

electrodynamics which naturally gives rise to Dirac monopoles.

Let us recall that Diracl? derived his quantization condition by
postulating the invisibility of the backflow of magnetic field lines
with respect to electrons. In the present formulationm, this is
automatically ensured if the electron is coupled minimally via the
covariant derivative D:_“ff}c_’i-f L_ilfﬁfgﬁ}-"ijj, since this
derivative is indifferent to jumps of ﬂi by 2w . There was, however,
one problem which Dirac was not able to solve within continuum
electrodynamics: Even though he had succeeded in making the string
invisible to electrons, it still carried an infinite demsity. In
order to circumvent this problem, many tricky procedures were
invented and you have heard about them in Prof. Yang's lecture. It
15 gratifyving to note that the present modification (7) of the
electromagnetic action completely avoids these energetic problems
without invelving additional mathematical structures. The scalar
fields, on the other hand, describe spin zero particles which couple
locally to the dual electromagnetic potential ﬂi. Thus, with respect
to the original potential A,, they correspond to magnetic monopoles.
Their magnetic charge is *4T 35 we can read off equ. (40). This
is precisely Dirac's value for magnetic monopoles which has magnetic
charges= uﬂ_ felectric charge (in our units). Thus the partition
function (7}, (10} has a chance of being the correct extension of
quantum electrodynamics into the short-distance regime and the

monopoles would be scalar particles with well-defined complicated

repulsive self-interactions.
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DISCUSSION

CHATIRMAN : H. KLEINERT

Scientific Secretaries: T. Hofsass and P. van Baal

DISCUSSION

- GOCKSCH:

How is your action related to the standard Wilson action? In
particular, can one explain the appearance of the njj(x) through
this action?

- KLEINERT:

I did not have time to explain this during the lecture, but
you will find it in the lecture notes, paragraph IL up to equation

(9).
- KREMER:

I am afraid that the monopoles in your theory might form
dipoles or some condensate. How can you be sure that the monopoles
exist individually?

~  KLEINERT:

Indeed the monopoles do form a condensate if the coupling is
so strong such that the system is inside the Higgs phase. 1In the
weak coupling phase, monopoles and antimonopoles can form dipoles
through the electromagnetic interaction. These dipoles can be
calculated from my final action. All forces are known: the long
range ones from the electromagnetic coupling g = 2m/e, the short
range ones from the interaction terms in the Higgs field. Notice
that these terms are unknown in Prof. Yang's theory of monopoles
while here they arise from the fact that the sum:



)3

8
g ee V34050

(cf. equation (25)) does not involve all random loops but that
backtracking is forbidden.

Examples:

>

~

i>

1
1t ,

The loops on the left-hand side are absent, since they would double-
count the equivalent loops on the right-hand side.

These restrictions are automatically ensured by the short
range self-interactions of the ¢ field shown in equation (37).

- SCHAFER:

What will happen to your construction of the Higgs field if
you make the same analysis for a non-Abelian theory?

- KLEINERT:

In detail, I cannot say. But it appears as if Abelian and
non-Abelian theories are quite similar in the strong-coupling phase.
The principal difference between the two seems to lie in the fact
that in four dimensions the physics in the Abelian theory changes
abruptly at a critical coupling, where the spaghetti of monopoles
disappears, while in non-Abelian theories the strong-coupling physics
can be extrapolated without discontinuity into the weak coupling
regime (with only a roughening transition wiping out the memory of
the lattice). By transitivity, we might expect that the strong-
coupling Abelian theory can be used to learn something about the
weak—-coupling non-Abelian theory.
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- LYKKEN:

Can you determine the parameters of the Higgs potential in
your scheme?

- KLEINERT:

Yes, because the coefficients of the |*|2n expansion are
completely determined by the theory, compare equation (37).

- VAN DER BIJ:

Can you tell us what the masses of the Higgs and the gauge
particles are?

- KLEINERT:

Yes, from equation (40) you see that the Higgs mass is given
by (t<D):

mﬁ = 4D(D-t)

and the mass of the neutral vector meson 1s:

e
=g |l

inserting |<y>|2 = 8(D-t) and & = e?/(2n)2 we find:

memz = ¥2 Dfe = 20

which brings into the TeV range. Before we compare with
experiment, however, we should not forget this is not the full
Georgi-Weinberg-Salam theory but just a model,

= TURDK:

But how do we obtain in this lattice theory the weak inter—
action scale of approximately 100 GeV?

= KLEINERT:

In every rengormalizable theory you have an observable mass,
which is given by:

m=a £(g) (%)
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It is characteristic of renormalizability that m (and any other
observable parameter) is invariant under a change of the scale of a
as long as the coupling is appropriately adjusted as a function of
a, Thus the relation (x) does not really determine the mass, but
everytime you choose a new a you have to adjust g such that m is

the mass you want it to be. After all, the mass is the proper
dimensionally transmuted parameter to characterize the theory (which
replaces the pair (a,g(a)) to be used otherwise),

- MUKHI:

Can you distinguish your Higgs particle from those of other
theories?

- KLEINERT:

By more detailed dynamical consequences of the theory. Since
all parameters are fixed, these are now calculable. For example,
my Higgs particles will never split into smaller fermionic sub-
structures (such as technicolor quarks).

- TDOBREV:

You were stressing that you do not need to have sections, In
the continuum they are needed to have a mathematically well defined
description of monopoles. Of course, on the lattice you do not
need sections, for topological reasons.

- KLEINERT:

It is not the topology which makes the strings invisible in my
lattice formulation but the specific form of the energy. Had I
added a term —nij in the exponent, strings would have shown up.

My reservation against the section way of avoiding a string
energy derives from the impossibility of making a quantum field
theory in which a quantum field y(x) is supposed to know which is
the upper and which the lower section of the many-monopole states
it can describe. Maybe Prof. Yang can explain that,

-  YANG:

How to go from a finite number of particles to a field theory
is a similar problem as in usual QED, and there is no difficulty.
The difficulty that there is no Feynman rule derives from the fact
that there is no interaction representation.
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- KLEINERT:
Exactly, and this in turn is due to the sectioms,

- CASTELLANT:

Are there other ways to generate Higgs fields without using
the lattice formulation?

- KLEINERT:

Most non-linear systems manufacture their own defects which
have finite energy and therefore can appear in the laboratory
(solitons, vortex lines 1in superfluid *He, and disclinations in
liquid crystals)., All these can in principle be represented by a
Higgs field through a lattice formulation, and you can find this in
recent Phys. Lett.A and Lettere Nuovo Cimento of mine.

What I presented can be seen as an idealization of this type
of non-linear systems, in which smooth defects are sharpened to be
local, which can be described by a local field theory, and in which
the residual interactions among the defects are completely linear-
ized. In this idealization, the lattice is convenient in preventing
energetic infinities to appear. Also, it simplifies the construction
of the Higgs field.

- CASTELLANT:

I was thinking more of recent appearances of Higgs fields in
dimensional reduction schemes, :

- KLEINERT:

How those Higgs fields are related to my defect Higgs fields,
I do not know, but would be interested in finding out.

- HOFSASS:

1 want to point out, that if one uses your procedure to
generate the Higgs field which is needed to unify electromagnetic
and weak interactions, one has a very restrictive scheme: as all
the parameters for the Higgs field are fixed, the scheme could
predict the mass of the electron.

- PERNICI:

Do you have an analogue of the Dirac quantization condition?

325



- KLEINERT:

Yes, My monopole satisfies eg = 27 which, by the way is the

same as Dirac's 2eg = 1, since he used the convention:
1 _ 1
£ = Té'ﬁF&\) instead of I;FSV

- TUROK:

What is the spin of your monopocle? Don't you need spin 1/2
for the full electromagnetic symmetry?

- KLEINERT:
My monopole's spin is zero.
~  ZICHICHI:
Spin zero is just garbage.
- KAPLUNOVSKY:
Why for heaven's sake should it have spin 1/2?

-~  KLEINERT:

Don't you know, If Prof. Zichichi wants it to have spin 1/2
it must have spin 1/27
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