Int. J. Engng Sci. Vol. 23, No. 9, pp. 927-935, 1985 0020-7225/85  $3.00 + .00
Printed in Great Britain. © 1985 Pergamon Press Ltd.

TOWARDS A QUANTUM FIELD THEORY OF
DEFECTS AND STRESSES—QUANTUM VORTEX
DYNAMICS IN A FILM OF SUPERFLUID HELIUM

H. KLEINERTY}
Institut fiir Theorie der Elementarteilchen, Freie Universitiit Berlin,
Arnimallee 14, 1000 Berlin 33, F.R.G.

Abstract—With the goal of developing a quantum field theory of defects under stress we first solye
this problem for the simpler case of vortices in a thin film of superfluid “He. The theory we obtain,
to be called gquantum vortex dynamics (QVD), turns out to be what is known in quantum fgeld
theory as scalar quantum electrodynamics in 2 + 1 dimensions (also called scalar Abelian Higgs

model).

1. INTRODUCTION

IN THE last seven years there has been considerable progress in understanding the
interrelation between the two types of gauge fields in the equations of elasticity ard
plasticity. One of the two, the gauge field of elasticity, has been used for a long time by
Maxwell, Beltrami, Schifer, Kroner, and others [1] to find the stress field of arbitrary
defect configurations. The fact that the plastic fields are also gauge fields has been
discovered [2], physically interpreted [3, 4], and put to application [5] only recently. They
can be used with great efficiency to calculate interaction energies between defect lines [6].

Within the Cosserat continuum of higher-gradient elasticity, the two gauge structures
have their origin in the two mutually dual conservation laws, that of dislocations and
disclinations:

aiaij =0, ()

9i0t;j = €,
and that of stresses and torque-stresses [7]

6,0,-,- = 0, (2)

61‘"1‘1 = TE€kiOk-

It has repeatedly been noticed that the field equations of elasticity and plasticity show an
asymmetry: While the equations of the elastic gauge fields in terms of any given conserved
defect densities are determined by the elastic constants, the dual determination of the
plastic gauge fields in terms of the stresses remained impossible due to our ignorance of
the energy of the plastic gauge fields.

Several attempts were ‘made to complete the equations. One is due to Schifer [8], who
tried to imitate Mie’s way of completing the Maxwell-Lorentz theory of electrons and
photons [9]. Another more recent attempt tries to take advantage of recent progress in
the theory of elementary particles via non-abelian Yang-Mills gauge fields and postulates
a similar Lagrangian for the defect gauge fields [10].}

A third line of approach, which we think is the most physical one, starts from the
observation that the defect gauge fields are really discrete objects [3-5]. As long as one
was Interested only in calculating stress fields for any given defect configurations, this
observation was not relevant. For the opposite problem of finding the motion of defects
in a stress field, however, the discreteness becomes extremely important.

t Supported in part by the Deutsche Forschungsgemeinschaft under Grant No. K1 256/11-1.
f Something is physically wrong with this theory since the long-range stress field around a dislocation falls
off exponentially. See p. 208 of [10].
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2. STRUCTURAL CONSIDERATIONS

Faced with the unusual problem of finding equations of motion for integer-valued
gauge fields we took advantage of the fact that there exist certain transformations of the
partition function of these fields which carry the sum over an ensemble of defects into
that over the fluctuations of a continuous complex disorder field [11, 12]. For this field
it is then possible to derive equations of motion in the conventional way.

The structural basis of this transformation is rather simple. As stated above, the two
gauge fields are a manifestation of the two sets of conservation laws. Conservation laws
imply the existence of closed line configurations: The law d;0;; = 0 implies closed lines
of stress (associated with o;, 02, 6;3), the law 8,;; implies closed lines of disclinations
(associated with 6;,, 0;5, 6,3). In the continuum approximation, the two line structures
are indistinguishable. Due to the discreteness of the crystalline structure, however, defect
lines are discrete objects. They are “quantized” such that Burgers’ and Frank vectors are
integer multiples of the basis vectors and symmetry angles. Closed discrete lines appear
in the theory of elementary particles. It is well-known that an ensemble of fluctuating
particle orbits can be described by a quantum field or a fluctuating field. It is this dual
relation between particle orbits and fields which formed the basis of our disorder field
theory for ensembles of defect lines.

The situation became clearest when not directly considering defect lines in a solid but
looking, instead, at the structurally similar but much simpler system of superfluid “He
[11]. In that system the role of the stress energy is played by the hydrodynamic energy of
superflow and that of defect lines by vortex lines.

The result of our manipulations was a disorder field theory of the Ginzburg-Landau
type, which is normally used in the theory of superconductivity. The difference lies only
in the interpretation of the field quantities. In particular we observed a disorder version
of ‘the Meissner effect: At high temperature, the disorder field acquires a vacuum
expectation value which screens the vector potential. This implied that, just as magnetic
fields are expelled from an ordered state, the superflow cannot invade into the dis-
ordered state.

The possibility of writing down a local disorder field theory depended crucially on the
three dimensions. Feynman diagrams are lines and picture directly the vortex lines
[13, 14].

When generalizing the techniques to crystals we found again a field theory of the
Ginzburg-Landau type, albeit a more complicated one. Again there was a disorder version
of the Meissner effect, namely that transverse stress cannot invade into the disordered
moilten state [15].

The question arises whether one can find a similar field theory for dyrnamically moving
defects, such that the partition functions can be used for a full quantum statistical
mechanics of defects and stresses.

There is one immediate obstacle: Defects are lines in real space such that, in space-
time, they form world sheets. Until now, in spite of many years of effort in field theory,
nobody has come up with a satisfactory quantum field theory for fluctuating surfaces.

If we, however, set ourselves a more modest goal, namely that of finding a quantum
field theory of defects and stresses in two dimensions, then it can be solved by means of
the same methods developed before for classical fluctuations in three dimensions. In two
dimensions, defects are point-like objects, such that in space-time they do form world
lines and these again permit a representation in terms of a disorder quantum field theory.

3. QUANTUM PARTITION FUNCTION OF PHONONS
As a first step in developing a quantum field theory of defects and stresses in two
dimensions we shall study again the simpler case of a two-dimensional superfluid, as
represented by a film of “He below the A point. Such a film is characterized by the phase
variable y(x) of its condensate wave function. The action is similar to the elastic action
of a crystal
T

1
2= dtdzx[; G (amz} , 3)
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where Ty = p(h%/M?) ~ 1 K and a ~ 3.581 A is the interatomic spacing, M ~ 4
X 1.68 X 1072 g the mass of the “He atoms, p ~ .145 g/cm® the density, and c the
sound velocity as given by the slope of the dispersion curve, ¢ ~ 18.2 K/A. The partition
function of “elastic” quantum fluctuations can be formulated most specifically by making
space-time discrete with spacing a and e, respectively, and calculating the path integral
on a simple cubic lattice:

_ _ Y T) et o, miGon AT ] 4
Zy S5 € (4a)
V(27rec /Ta%)
— e(1/2)2n,klcg(nnﬂ,,-o»el(cl/al)](,‘](,'). (4b)

The symbols V,, V; denote lattice gradients, Voy(x, 7) = ¥(X, 7 + ¢ — ¥(x, 7). Voy(x,

7) = y(x + ig, ) — v(x, 7), where i are the lattice vectors along the ith axis. The

quantities K; = (%% — 1)/i = K¥, = (e — 1)/i = Q¥ are the eigenvalues of these
lattice gradients, where

N = 2T ——
N, €

and

is the number of time slices. In writing down the path integral we have followed the
standard rules of quantum statistics by making the time variable imaginary t — 7 = it
and considered fields v(x, ) which are periodic in 7 € (0, 1/T).

For the following discussion it will be useful to introduce the temperature T, = c/a
which is equal to 1 /\/ (27) ~ .4 times the proper Debye temperature 65, of the superfluid.
Then the partition function reads

f d’Y(x 7) e~ (/2XT0/ TX1/N) Zxs[NKT/ ToR(T0)4(Vim)?] (4¢)
J@rT3/TTN,)

Experimentally, it is known that the superfluid phase transition occurs at some critical
temperature 7, ~ 2.2 K when T,/7 is almost % For zero Debye temperature, Tp = 0,
this would lie in the classical regime; for Tp > Ty it lies in the quantum regime.} From
the experimental value of ¢ we have Tp ~ 5 K, 8, ~ 13 K such that 7 > To. In the
limit, e — 0, the partition function (4b) becomes

Zo = eA(N/Z)f[de/(Zn)Z]anog(ﬂ,,fln+c252f(l(/a2)

s eV [[d2k/(2mR)[c/ (KK/a2)+ T log(1 —e—ev/ (KK/at)]

«e—0

where N is the total number of lattice sites. This gives rise to a Debye spectrum of specific
heat on a simple cubic lattice.

4. INTRODUCTION OF MOVING VORTICES

Let us now extend this theory to incorporate moving vortices. The first step is to
introduce plastic gauge fields, the plastic “distortions” 8, 8; and write the action in terms
of the difference between total gradients d,v, 9,y and these plastic distortions:

1
A =T/2 f dldzx[? @y = B — @y — 3i)2:| . (5

+ The time slicing is, of course, a technical artifact and, at the end, we have to take the limit ¢ — 0 ie.
N, — 0.



930 H. KLEINERT

A single vortex line surrounding a Volterra surface S is given by

Bi = 2mw5,(S),
B = —2mwudi(S), (©)

where v, is the speed with which the vortex line moves through space. This action is
invariant under the defect gauge transformation

B, — B+ 9.N,

Yy —1vy+N, @)

where we have employed three-vector notation x*= (z, x), 9, = (3;, 9,), for brevity. This
corresponds to shifting the Volterra cutting surface S of the vortex line to a new position
§’. Indeed, doing this in (6) we find (7) with N = 2#x8(V), where V is the volume enclosed
by §' — S. Obviously, this action is the superfluid version of the action which controls
crystalline elastic and plastic deformations.

In order to develop the desired quantum field theory we now have to insert the same
type of plastic deformations into the lattice form (3) of the partition function. This
becomes

dy(x, 1)

Z= E} ®{n.] H fm J@xTHToIN,)

2
X exp — % 70 ~ Z [ ( 7;) (Voy — 270 + (Vivy — 21mf)2] - 8

Here n, are integer numbers reflecting the fact that y(x, 7) is a phase variable of the
condensate wave function such that v and v + 2#n are physically indistinguishable. The
defect gauge transformations are now integer-valued [3-5]:

n, —n, + VN,
¥ — v+ 2xN. 9)

In order to avoid an infinite overall factor we have to fix the gauge in the sum over
plastic gauge fields n, via, say, ®[n,] = onp.

In the following it will be useful to abbreviate the quantity c(e/a) = (Tp/T)(1/N,) by
¢. Tt is the sound velocity measured in units of a/e. We further introduce 8 = T,/T as
the inverse temperature measured in units of 7' ~ 1 K\,

In order to exhibit the world lines of vortices in Z we now introduce the (defect gauge
invariant) superfluid current * as the conjugate variable of V,y — 2wn, and rewrite (7)
as [12]

B db(x, 7) db(x, 7) dy(x, 7)
Z- H J(sz/N) m«mm& J 27N, /8)

X 3 b0 exp{— % SE+ Y+ i3 H(V,y — 21rn#)} . (10)

{nu} X,7 X,T
Integrating out the v field produces the conservation law of supercurrent
V.bHx, 7) = 0, (11)

where Vo f(x, 7) = f(x, 7) — f(x, 7 — ¢), Vif(x, 7) = f(X, 7) — f{(x — ia, 7). This is
fuifilled automatically by introducing the gauge field 4,(x) via
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P(x) = ¢V, A5(x — N). (12)
This leads to

Z = det (-V,V) ! f dPA,(V,4) X X dngo exp{— % 2 A Da

\/(27F5/N1)2N {1}

+ (Vod;)? + (Vido)] + 27 2 A(x, TIH(x, 7)} . (13)
The integers
H(x, 7) = ¢V, (X + 1) (14)

satisfy V,/* = 0. As n, run through all integers in the gauge ny = 0, they describe an
ensemble of closed nonbacktracking world lines [11, 12]. Integrating out the A4, field gives

Z=2Z,3 89,0 e-m«Zﬂ/ZMJz.,,k[10(k)*zo(k)/K,-k.-+(11(k)'u(k)(a.,-K,-Iij/kK)(KokméZKiki)] 15)
{in}

where Ky = Q,. B o B
Using the closedness of the world lines, V,/* = 0, we can replace K;/ by Kol in the
exponent and obtain

Z =17 z 8%.1m0 e*(4Tzﬂ/ZNv)Ex,x'/“(X)v(x—x’)l,.(x’), (16)
{4}
00
where we have introduced a metric g,, =| 0 10 | and a potential
001
d*k 1

vlx e—l(wn'f—kx) S — 17
0 = Q2 )2 .0, + KK, (1n

This potential is infinite due to an infrared devergence of the n = 0 term. This implies
that only such /“(x, 7) configurations can contribute which satisfy Z,, /“(x, 7) = 0. For
these, we can subtract

&%
v(0) = Z f Qn)? 0,0, + czKK (18)

define v'(x) = v(x) — v(0) and arrive at

Z =7 Z 65»1#,0 e—(4726/21\/',)Zx*rl“(x)v'(xfx’)l,‘(x’) (19)
{1}

This is the partition function of moving vortices in 2 + 1 dimensions with Biot-Savart-
like interactions due to stress. Notice that the vortex part is a pure factor of the Debye
partition function Z; of the phonons.

The asymptotic behavior of v'(x) is given by

V(% T) W T N log x| — (20)

1
= 2
with

1
6= ~2 2 — log (2./2e") (y ~ .577).
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It is then useful to define a further subtracted potential v”(x) = v'(x) + & and rewrite as

7 = Zoe-(412/3/2N,)[Zx/»‘(x)I,(xH Znexvln(x)v”(x—x')l,,(x')]. (2 1 )

The potential v"(x) has the Fourier transform (Q,Q, + 2KK)™"' — (27)%6@(k)b.,, o(0(0)
— 6). Going back the steps which led from (13) to (19) we can now reexpress the second
term in (20) in terms of a fluctuating vector potential whose space-time independent part
is modified (indicated by a double prime on the field energy #*b,) such as to correspond
to this subtracted potential v"(x). In this way we find

Z o deA 5(viAi)e—(N'1/2ﬁ)Exb“(x)b,‘(x) X z Bno Oe—(4126/2N7)6Zx1“1,( 27i ZxAulr (22)
m K .
{nu}

This partition function displays the double-gauge nature of elasticity and plasticity. The
fields of supercurrent »* and the vortices /* form both closed world lines V,5* = 0, V,/*
= 0 [the analogue of the crystalline relations (2) and (1), respectively]. These are
automatically fulfilled by the curl representation,

b = MV, Ay (x — \), I* = ¢ i (x + p)

The gauges of the stress gauge field 4, and the defect gauge field n, are fixed by V.4,
= 0, np = 0. The superflow energy is quadratic in #*. It generates a natural core energy
of vortices which is quadratic in /*. The coupling is linear between the stress gauge field
and the vortex current /*. Alternatively, we can also write >, AJ/* = > nb*, ie. the

X
defect gauge field is coupled linearly to the supercurrent.

The important difference between the two fields lies in the fact that the stress gauge
field is continuous while the defect gauge field is integer.t If this were not the case we
could use the exponent at (22) as an action for the dynamics of superflow and vortices
(stresses and defects). For integer fields, however, we would not know how to handle such
equations. These difficulties are circumvented by representing the vortex ensemble by a
continuous disorder field theory [12-15].

5. DISORDER FIELD THEORY

Let us return to the original loop sum (13) and set ourselves the goal of finding a field
theory for the sum over all nonbacktracking world lines

z 6”0,0 eZwinAy(x)Iﬂ(x) — z 55,[#,0 eZniZ»‘iu(x)lﬂ(x); (24)
{ru) {m}

for technical reasons we add, in the exponent, an infinitesimal core energy of the type
produced by the stress fluctuations and consider

D 56,‘1“ 0 e—(I/2)52x1u1#+21riZxA,.(x)I“(x) (25)
{4}

Later we shall take the limit § — 0. Forgetting a moment the A4, fields we observe that
this sum can be thought of as coming from an auxiliary partition function

z=-311

A} x

"

5 e (/2D Ex{(1/T08—2mno)-+(V 6 ~2mni)2} (26)
—x LT

where 7, run over all integers. In order to verify this we merely introduce a conjugate
variable of integration via a quadratic completion and write

T Notice that integer gauge fields have only three possibilities of fixing the gauge ny = 0, 7, = 0 or 1, = 0.
We chose ng = 0. The transverse gauge V;z; = 0 cannot be realized with integer ficlds n,!
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RS I f jlz(x/)a e~ G/ =2mi 20U, 0-277) @7
g

Summing over all 7i,(x) squeezes l“(x) to integer values and integrating out the 6 fields
makes /*(x) divergenceless such that Z becomes

Z o T bgyug e CATHOMD, (28)
i}

Now we realize that the coupling to the A, field can be incorporated by adding in the
exponent of (27) the expression —2wid, which, in turn, can be obtained from (26) by
adding there —27A, to the gradients V,0. Thus we see that [16]

z 56,.1“, 2arlzxA,.I“ = lim z H da(x) —(1/26)ZX{(1/02)(V00 27 Ao—2nF0)2+(Vifl—27wAi~2mni)?} (29)

) =0 (3 x Jor 27

Since & is so small, the fluctuations of 6 are squeezed completely into the periodic

potential valleys. For this reason one can replace the exponent by a periodic function
with the same valleys and write

S 860 g2 Erbl o lim H f dB(X) /D)2 (1/2)c08(T08—2 Ao)--cos(Vid— 254} (30)
ulk,
{1} -0

This is the form which we can manipulate directly into the desired disorder ficld theory
[11, 12]. For this we consider first the case 4, = 0 and write cos V8 = cos 8 cos 8(x
+ u) + sin 6 sin 8(x + p) or, with the two-vector fields U,(x) = (cos 8(x), sin 6(x)),

cos V,0 = UV, U, + U2 3D

Then we observe that

S cos V,0 =%z {ULV,U,) + (VU)U, + 2U%}

=13 UM, -V )U, +2U2, (32)
and further, since
v, —-V,=9VY,=V.9,, (33)
also
vV,
2 cosV,0 = ZU(1+ 5 )U,,. (34)

X

Thus the exponent in (30) becomes

e(A/S)Zx{Ua(H( l/ZX)V_’,Vu)U,;-(l—(1/62+2)/>\)}, (35)

where A is an arbitrary x dependent parametert which we shall take constant, for
simplicity.

Equivalently, we can use a complex field U = U, + iU, and write U*U instead of
U,U,. We now introduce the complex disorder field ¥ by rewriting the exponential as
follows:

+ It always drops out since U2 = 1.
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H f iid¢5 —(5/4X)7,x|‘0{2+(1/2)Zx('2’+U+L‘(.‘)7 (36)

where @ is short for}

o

and [ d¥d¢* = [, dRe® dIm®. Inserting (36) into (30) we can integrate out the angular
variables 4, and the sum over defect loops for 4, = 0 becomes

> 5,0 oC lim H f % exp —(3/4N)2 > +loglo(|?)). (38)

() -0

For small and smooth fields ©(x), the exponent has the Landau expansion
1 S 2 4
—ngV‘PV“?—Z -—1 ZM——ZI‘/’\ .- (39)

We are now ready to introduce the coupling to the gauge field 4,. For this we realize
that with the complex fields U(x), the exponent in (30) reads ReU*(x)U(x
+ u)e 27443 This suggests introducing covariant derivatives on the lattice

DUG) = Ulx + p)e 4 — U(x),
D,U(x) = U(x) — Ux — e s, (40)

for which

Re 3 UH)U(x + p)e 24 = L S (U*D,U + (D,UY'U + 2U*U]

x

=52(U*(D - DU+ 2U"U]
. D,D,
= Z U (1 + > )

When we go again to the complex disorder ﬁe]ds ¥ we see that, instead of (38), we now
have

U. (41)

> B, €2TIEA o llm H fd‘P(x)d@*(x) exp (6/4}\)ZX|<P|2+10310|90|)
{iu}

A
where @ is given by the same equation as (37) except with V, replaced by D,.
For small and smooth fields we can write again a Landau expansion where D, is
replaced by the usual covariant derivative

D, — 8, — i2nd, (42)

and arrive at the partition function of quantum vortex dynamics (QVD)

Z o« [] f dA,8(V, A e 2Dzt
xT1 f dede exp —Zx{(l/SA)D»t(PD“(PJr(1/4)(5/>\)_1)|¢|z+(1/64)|¢|4+ Cn @)

1 It does not matter which branch of the square root is taken since the result (38) depends only on |22
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Since we have no control over the neglected higher terms the coupling constants are
really free parameters.

When continued back to ordinary time, the action in this partition function is
recognized as the 2 + 1 dimensional scalar electrodynamics, also known as the abelian
Higgs model. As such it has been studied in detail in the field theoretic literature. In
particular, the structure of the Hilbert space is well understood [17].

5. CONCLUSION

We have seen that the integer nature of the defect gauge fields naturally gives rise to
a continuous complex disorder field for the world lines of vortices. The “stress” energy
between the vortices is automatically taken into account by a minimal coupling to the
stress gauge field. The resulting gauge theory is well known to field theorists. The insights
gained in the general field-theoretic studies should contribute to our understanding of the
dynamical and quantum-statistical behavior of vortex ensembles.

The generalization to crystalline defects in two dimensions is left to a separate
publication.
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