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Interaction Energy between Defects in Higher-Gradient Elasticity.
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PACS. 61.90. — Other topics in structure of liquids and solids.

Summary. — In linear elasticity, the interaction energy between defects depends
only on the total defect tensor

N:5(%) = 0;5(%) — ¥ (i1 0ra;1(x) + (4§)) + Fes01005(%)

and not on the particular composition in terms of the 6 -+ 6 components of the dis-
location and disclination densities o,;(x) and 6;;(x), respectively. In momentum space,
this energy is

def - IU'Z (lnu(q 7:[1_,” lnll(q>|2) .

We show that higher gradients in the elastic energy give the additional defect energy
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where «;;T = (6,5, — 0;0;/8%)x;;,. This removes the degeneracy for all 6 + 6 components
of «,;; and 6;;. The elastic constants are defined in the text.

Within linear elasticity, a large variety of defect distributions is energetically indis-
tinguishable. The only quantity that determines the physically observable stress is

(*) Supported in part by the Deutsche Forschungsgemeinschaft under Grant No. Kl 256,

261



262 H. KLEINERT
the total defect density (1)
(1) nzj(x) = &ix1€imn ak amuln(x) ’

(where w,(x) = (9,u; (x) + d,u(x))/2). This tensor is symmetric and conserved
(92:m:;(x¢) = 0) and contains, therefore, only three independent components per sites x.
The set of all linelike defects, however, is classified by the the full symmetry group
of the solid which, in the continuum approximation, becomes the Euclidean group
such that there are dislocations with Burgers vector b (for translations) and disclina-
tions with Frank vector € (for rotations). Their distributions are described by a
dislocation density

(2) 005 (X) = €451 0 Oy U (X)
and a disclination density

(3) 0,;(x) = £;,,0;, 0, w;(x) ,

(where w;(x) = %¢,;;0;u,(x)). The possibility of these being nonzero stems from the
multivaluedness of the displacement and rotation fields u,(x) and w,(x) (3). The densities
satisfy the conservation laws

(4) 0,0,;(x)= 0, 0;0;;(%) = — &;0p1(x) -

Ilence each of them possesses 6 independent matrix elements per site x. 1t is easy to
work out () that 5,; contains o,; and 6,; in the following combination:

(5) 7:5(%) = 0;;(x) — %(ejklak“jz(x) + (’5?')) + F e 0100(x) .

In this relation, the antisymmetric parts of 0;; cancel with the divergence of «;;. If
«;;/¥ denotes the divergenceless part of «;; and 0}; the symmetric part of 6;;, we can
also write

(6) 7:(%) = 63,-(x) - %(8iklaka7‘l’r(x) + (’07)) .

Thus, the linear elastic energy of arbitrary defect distributions depends only on a
specific combination of the 12 independent components of 6;; and o,;;T. It is inde-
pendent of the three antisymmetric components, 607;, and those of three components
of «;; which do not survive the curl operation in (6).

This 9-fold degencracy of 7,; in terms of «;; and 0,; can be formulated as an inva-
riance under a certain class of gauge transformations. Such a formulation is useful
for understanding the structural interdependence among the different types of defects.

When developing statistical models of defect ensembles (3-%) it is important to re-

move this degeneracy (« gauge fixing ») (¢). Otherwise, the partition function acquires
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infinite overall factors. This is usually done by attributing, to the defects, certain
ad hoc core energies (sometimes derived from bond counting). Such a procedure can,
however, be quite dangerous, since it might destroy the interdependence between
dislocations and disclinations (7).

It is the purpose of this note to remove the degeneracy in a systematic way, namely
by caleculating the defect cnergies in a theory of elasticity which contains the next
higher gradients of the displacement field w;(x). This produces definite modifications
oif the near-zone elastic ficlds and gives specifies core energies to each type of defect line.

The starting point is the higher-gradient elastic energy (%) in the presence of plas-
tic distortions and rotations (%)

y)
(7) K, :fd390 {H(’”/z‘j — u;;F)? -+ 5 (Wi — w;F)? 4
+ 3 (20 - D) V2(0;%y, — 0;uy,P)2 4 2ul?[(0,0; — 30,85, 0w, ¥ — 0;0,F)% +-

+ £(0,0; — 0,850, — 0,0,F)(0;0; — $0; 8,4, 0w — a].w,.P)]} .

This energy is invariant under defect gauge transformations

0, (x) — 0;u;F(x) + 0, N (%) — &;54 My(x) 5

0;w/(x) — 0,0, (x) + 0, M;(x),

(8)

wi(x) > 0i(x) + Fep, 0, N (%) .
These are a manifestation of the irrelevance of the Volterra cutting surface by which

one can construct the defect line: a general defect line has a plastic distortion and
rotation (%10)

0; uw;F(x) = 0,(8)(b. 4 &4, 2,%,) ,
(9)

0, F(x) = 0,8)2;.
Changing S to S’ at fixed boundary I amounts to the gauge transformation
0;uP(x) - 0;uP(x) + (04(8") — 6,(8))(b; + &54r Lg,) =
(10) = 0,uf(x) + O;[— (V) (b; + &50r 24%,)] — €i5a[— 6(V) L],

0,0 F — 0;wF + 0,[— (V) 2,7,
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where V is the volume enclosed by the two surface shells § and S’ these are obviously
the continuum versions of the first two eqs. (8). Using (8), all cutting surfaces can al-
ways be gauged into certain standard configurations which then are in a one-to-one
correspondence with their circumferences. An example is the axial gauge ozu,” =0,
,0Ff = 0.

For our purposes, it is the symmetric transverse gauge
(11) o,ul(x) = o,ul(x) , 9,0;uf(x)=0,

which will be most convenient. We can always choose the transformation functions
M ,(x), N,(x) such that this is satisfied (1!).

This gauge simplifies drastically the coupling between the total and the plastic
parts in (7). Minimizing the energy in u,(x) and using the Green’s function in mo-
mentum space as

(12) Giy(q) =

pg*(l+ig)\"Y g ) @+ D +URgY) q*

we find directly the defect energy (12)
l !
(13) Byee = 2, plw F% -+ 5 lw P12 + 320 + A)1 210, 7|2 -+
q
+ 2ul?(|0,0,F|2 + £0;0,770,0F) —
- %Gii'(q)(ﬂaiullp_ (2u + A)1'2020,u,,F — 2H128i70zalaj(ajwkp+ 85kwjp))‘

: (}'ai'ullp— (2u + 2) lrzazaj,u”p_ 2ul?e;,0,0; (ajwlcp -+ é‘alcwip))} =

2 1 (A + (2w + NV2¢?)
S . Pl2 —_ P|2 — 2 l’2 2 ___ SR _ P|2
‘é{[ulu [* + 5l |]+2[( w+ A% P 1YE e Ty ]qu |2+
1 q9;4; 99’
2 e P)2 S e P*D .y P . N s, ., ).
+ 2lul I:(azw:; ) "JF 661(91 aawz (1 1_'_ l2q2) q2 ( kk q2 )

“(0;05F -+ €0, 0F)(0; 0P + eiak'wjp)]} .

Now, all we have to do is to express the plastic distortions and rotations in terms of
the defect densities 7;;, oy, 04
First of all, the defect tensor 7,;; becomes, in the gauge (11),

(14) 7;;(x) = 02(0 4wy, — w;P) — 0, o;uy, ",

(1) In real crystals, the plastic fields are integer valued and this gauge cannot be chosen without
losing this property. In the present context, however, this subtlety is irrelevant. F¥or a proper
treatment see ref. (%).

(?) Incidentally, with this method it is also easy to find a simple closed formula for the defect
energy in linear clasticity crystal symmetry

1 1 2:d: 1 e Qv
2 z {cklk’l’ — @34y CigearCor g v G () [;2 (e — OraMry) + pr 77rr] [_q_" ervr — O 11 Mpryr) + - 'q; ﬂr'r']} .
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such that

» 1
u;F(x) = — B (71779' — (0 — (” 0;/0%) ’]lz)
15
(15) - 1 X s 1 \
Z lw: P = 3, - 12512 2w = 27 [? s
q 9 9 q q 4

and the u,F(x) parts in (13) give

1
06 Baa= (sl - 5 2 @k D)

q

(A4 (21 + A)'2¢?)* 2
(2/L—|— ;l)( _* Zrz ) N
1 1— 2»

= vv 23 /2 R
Z (In“ +q . |77”|) B> §q2(1+t”q°) T, el

where » = 4/(2(;¢ 4+ Z.)) is the Poisson number.
The first term is the usual defect energy of lincar elasticity which, for a special
case of a pure dislocation line

reduces to the well-known formula of Blin’s (13).
Next we use (3) and find

Z 6;]2 = Z ([akaleplz — |aiaiij|2) P
q

q
Z [(’jj()“[z = Z (|8,68j0,wf'[2 - lal 0; Ola)j”|’~’) s

(18) q a
Z [0,:]2 = Z ([8,(,8ijplz + 20,0,w,7* 0,,0;w;,
q q
— Op azij* 0,0;0 " — 10,0, (‘)jplz — 19,9, (“jpiz) ’
Finally, rewriting (2) as (?)
(
19) Ly = silclalc(/u’lnp -]" Ernm wmp) - gilclak alunp "*" (Snialc ka,ﬁ Du a)ip

and projecting out the divergenceless part of «,, gives

T 2 P W RY P P A AN r
Ty = 5105, " 4 (O — G:40) S 0)F — 2, 0.F - 4:G, 00,7,
T P 4 A A P
ot = o0 + ¢,4; 0,07,
(20)
020, T |- £,,;,0,0,, = — 2¢,q,0 P
247] i1 OV = “G14: 0,04,
T __ y 4 A P
0;0;;T = — (05— 4;41) 0, 0;0,

(**) J. BLIN: Adcla Mech., 3, 199 (1955).
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such that the remaining pieces in (13) add up to

Edef,2 = 2ul® Z

{1+s £ e 14 el2qg?
q

q* o q? 102:]% — q* 1+ i2g® 1250:]* +

1 1 T2 1+ e o 5 & 1 o
+ le(f E [0, 00:57 |7 + 4q [8%062;™ + £422,0:0:1|% + 17_’_”*[2"’]’5 E (004" €4310p1 + coCo) ¢ .

The energies Fy,;, and Hg,;, together are the desired total-interaction energy of the
general defect line in higher-gradient elasticity. The new terms produce Biot-Savart—
like forces between disclinations and local core energies for dislocations. These are
sufficient to remove the above-discussed degeneracy. The new interaction energy can
be used to study the statistical mechanics of ensembles of both dislocation and dis-
clination lines (14). This combined study is necessary for an understanding of the melting
transition via defect proliferation.

14y H. KLEINERT: Phys. Lett. A, 96, 302 (1983).



