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ABSTRACT

I point out the relevance of self-avoiding random
loops and surfaces to many physical systems and
show how their partition function can be formulated
as path integrals over unitary real or Ising field
variables. These can easily be studied by analytic

and Monte Carlo methods.
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The transitions in many physical systems are dominated by the
unlimited growth of line-like or surface-like geometrical objects.
The most thoroughly studied example for the first case is the super-
fluid phase transition where vortex lines proliferate and cause the
well~known A — peak in the specific heat, The evi-
dence that this peak is really caused by random lines is given by the
Villain model, which is precisely equivalent to & sum over such lines,
and which shows the same pesk in the specific heat (see Fig. 1). The
process of crystal melting is another important example. Here it is
the defect lines, whose growth causes the breakdown of crystalline

order. All these systems are discussed in detail in Ref. 1.

The above mentioned lines are characterized by the property that

they are non-self-backtracking which means that a line cannot fold

back onto itself (since the folded piece would annihilate and must

not be counted as a physical configuration).

In this lecture I want to focus on a third type of process where
line~like objects play an important role, namely polymerization, in
particular, the polymerization of sulfur. Around 115°C, sulfur exists
mainly in the form of 88 rings. As the temperature approaches a
critical point of T, = 160°C, the rings break open and join ends to
form infinitely long chains. The specific heat has a peak shown in
Fig. 1. Such line-like objects are self-avoiding. At every place

there can be at most one line element.

In all such line systems, the phase transition occurs when the
entropy per line element times temperature becomes larger than the

energy per line element.

In order to study ensembles of self-avoiding chains 1t was
proposed, by Rys and Helfrichg) and Wheeler and Pfeuty3), to use
a spin model of n components, with only one of them coupled in an
Ising like fashion, calculate all results as a function of n and let
n —> o at the end. Besides the fact that the high-temperature
series contains unphysical configurations {one-link closed chains going

forward and backward on the same link) and spurious "zero-link
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objects"3’4)

this model has the unfortunate drawback that it cannot be
simuilated on a computer via Monte Carlo techniques. By using path
integral methods, T. Hofsass and I were able to find a much more

manageable model3) whose partition function, on a simple cubic lattice,

reads
-
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wvhere u(X) = e are pure phase variables at each site X and v
is the Boltzmann factor exp(-€/T) (fugacity) associated with each
occupied link i. This formula is easy to understand. The right-hand
product gives rise to all possible chain elements across the links from
¥ to ¥+ T (at most one per link) and the integral over d6(1+ u*z)
either annihilates a chain element (1) or joins up its ends with a
neighbor (u*2), Tt is easy to see that the Ising model can also be
written in this form with 1 + u*2 being replaced by the infinite
series (1 + a2 4 b + ...) and v = thB. This accounts for the
fact that in the high temperature (small B) series of the Ising model,
lines can cross on a site from all directions., Since each link can be
occupied at most once, this number is limited by D such that, in D
dimensions, the infinite series may be truncated after (u*)2D without

any harm.

Another representation of the partition function is obtained by observ-
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Hence the partition function can also be written in terms of real vari-

ables as
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Fig. 1 Internal energy and specific heat of non-self-

backtracking random loops as calculated from the Villain
model. (From W. Janke and H. Kleinert, Berlin preprint,

1885)
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with the Ising model having 1+ 4a? replaced by Zrlazn/(Zn)! = cha and
v = thf . By a further simple manipulation we were also to transform
the integration variables o and u to the Ising variables si(f) =*]

on links and found the representations)

Z =2 ¥ M[1 - vD + %vs?] (3)
{Si(?)=i1} 54

where

s(F) = I [sy(x) + si(x-1)] (4)
i

is the sum of the Ising values over all links around each site.

6)

The Ising model itself can also be brought ™’ to si(g) variables.

In this case the integrand in (3) reads

MN[1- vD + lvs? 4 vz(—-l--s4 -2 s? 4+ 1)]; D=2
N 24 3
X

[1- vD + 4vs2 4 VZ(EE—SA _-% s 4 3)

(5)
+ V3C—L—s6 = st + %% s2 -1)]; D=3

Using this latter result we were able to define a model whose
partition function interpolates smoothly between the Ising model and an

ensemble of self-avoiding random loops. A detailed study of this model

5) 6)

by analytic™’ and Monte Carlo methods in two ' as well as three dimen-

7)

sions ~ gave convincing evidence that self-avoiding random loops are in

the same universality class as Ising loops.

The three-dimensional Monte Carlo data are shown in Fig. 3 and
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Fig. 3 Mean length and length fluctuations in ensemble
of self-avoiding random lines: The peak in the latter

curve agrees precisely with the peak in Fig. 2.
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the specific heat is seen to have the same shape as the experimental

one in Fig. 2.

Let us now turn to the second topic, i.e. self-avoiding random
surfaces. Random surfaces have recently gained increasing attention
for several reasons. Most fundamentally, they are important for under-
standing the forces between the constituents of matter {quarks). These
forces are due to color electric flux strings which, as a function of
time, sweep out  surfaces in space time. As long as the vacuum con-
tains only a few smooth surfaces, the quarks can never come apart
(confinement). The question of quark confinement is therefore inti-
mately related to the question of the proliferation of surfaces in

the vacuum (via entropy energy arguments).

But random surfaces have many more applications, some of which
are of economic interest. Amphiphilic soap molecules brought into a
system of 0il and water form a layer at the oil-water interface {see
Fig. 4). Under convenient circumstances the interfacial energy and

8)

invade into the water side and vice versa (see Fig. 5) leading to the

6)9)

the curvature energy become sc small ° that droplets of o0il begin to

formation of microemulsions (see Fig. . Microemulsions will be
an important tool of extracting the residual oil of depleted oil fields
(tertiary oil recovery). Notice that after depletion of a well there

is about twice as much oil left as has already been extracted.

There are further applications in other industrisl sectors of
which I Just mention octane improvement, pollution abatement, chemical
processing, lubricants, surface coatings, pesticides, cosmetics, bio-
membranes, and medicine. It is therefore worthwhile studying systems

of random surfaces.

It is obvious that the surfaces consisting of soap molecules are
self-avoiding. As a first step towards a microscopic theory, we were
therefore led to construct a lattice model of self-avoiding surfaces
(on a simple cubie lattice)., This can be done in complete analogy to

the self-avoiding random lines10). The partition function reads
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Fig. 7 The phase diagram of a mixture with equal
amounts of water and-oil as a function of soap
concentration (x-axis) and temperature (in OC).

B
The solid curve is from mean-field ¢ =-theory.
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where “i(;) are pure phase variables exp[iei(;)] on links ; and

v = exp(-&T) the Boltzmann factor for an elementary surface element.
The formula is again easy to interpret. The right-hand product distri-
butes all possible surface elements over the plaquettes i< j of the
lattice (at most one on each plaquette) whereupon the integration either
annihilates the element (1) or welds two adjacent ones together (uiz).
The model is now closely related to the Ising like lattice gauge theory
which differs from it by having 1 + uiz
1 + ufz + u§4 + ... and is in turn dual to the D=3 Ising model itself,

replaced by the infinite series

The model can again be transformed to real variables on links(yg;)
and ui(g), and to the Ising variables on plaquettes sij(;). For

further details see the original paper.lo)

In order to simulate microemulsions, the model requires the inclu-
sion of curvature energies.ll) Near the critical regime, this leads to

a mean field energy of the type
3
_ g2 2 2 3 _ 2 4 6
“Bf—go(a(b) +a1¢ +32¢ +83¢ +a4 2¢ +¢ (7)

(after a rescaling of field variables). Such energies have been studied
in great detaill?) and recently led to a simple explanation of experi-
mental phase diagram (see Fig. 7) as well as interfacial tensions and

light scattering data.13)
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