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A NEW LATTICE GAUGE MODEL WITH AN EXACT U(ec) SOLUTION
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The search for an exact N — co solution of U(N ) gauge theories has led us to a new lattice model in which the gauge field
dynamics is generated by four fundamental tensor fields describing subgluons. Our model has the same 8 — 0 limit as Wilson’s
and the same B — oo limit as far as the soft weak field excitations are concerned. It allows for the introduction of colorless
Hartree like collective fields and has a simple N — oo solution.

The existence of an exact V- oo solution of O(V) spin models has inspired hopes that also U(V) lattice gauge
theories might possess such a limiting solution [1,2]. So far, attempts in this direction have failed, except for D =
2, where the gluons have no proper transverse degrees of freedom [3,4].

We would like to report a solution to the problem based on a new lattice gauge model in which gluon dynamics
is generated by “bubble sums” of fundamental subgluon fields. Our model has the same § —> 0 (strong coupling)
limit as Wilson’s. The § - oo (weak coupling) limit is the same only as far as the soft weak-field . gluons are con-
cerned, as we shall see later. The main advantage of our model is that it permits the introduction of colorless
Hartree like collective fields for all U(V) *!.

The partition function of our “composite gluon model” can be written, just as Wilson’s [7], in the form

z= R f dU“(x)x’EVz(UM(x)), 6]

where the x are the D lattice sites, the U, (x) are U(V) matrices living on the oriented links y, the dU,,(x) are the in-
variant group integrals, and the U“V(x) the plaquette objects

Uy () =U, )0, (x + /.x)U:(x +)Us(x) . 2
The difference of our model with Wilson’s lies in the fugacity factor which in his case is
2(U,,) = explzB tiy (U, + Uy, = 21 ®)

while ours is chosen to be the result of fluctuations of four complex antisymmetric “tensor” fields 1) ¢(2)

wy P Yup
¢‘(3)), q)‘(,t), which transform according to the fundamental representation of the group UV),

! Supported in part by Deutsche Forschungsgemeinschaft under grant no. Ki 256 /11-1.
2 Supported in part by Deutsche Forschungsgemeinschaft under grant no. Kl 256 /10-2.

#1 fp the special case of SU(2) and SU(3), Ruhl {5] has succeeded in introducing colorless fields, although he could not find an
explicit action, as we have done. See also ref. [6].
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4
2U,,) = (A2 —2)2 — 41 El [ 460 4p® + -1

p<v
xexp(- I oD w06 + o2 G e+
+ ¢f3)+(x +u+ V)gbﬁ)(x +utv)+ ¢ﬁ)+(x + V)q)f::'))(x +v)]
+ HQ) B U082 + 1) + 6D (¢ + WU, (x + o3 (x + i+ )
+ ¢£?))+(x tu+ V)U:(U + V)¢‘(:3;)(x +2) + ¢(D*(x +) U:(x)¢£1,,)(x) + h.c.]) . (4)
Geometrically speaking, the fields ¢L’3 '(x) may be imagined as living on the comers of the four plaquettes with

given u < v having a common site X (see fig. 1). The arguments of the four fields in the fugacity factor (4) are
shifted in such a way that they are associated with the four inside corners of the upper right plaquette in fig. 1

(marked bv 0).

After four quadratic completions, the integrals can be performed with the result
2(U,,)=(1 = 260N det(1 — k(U + U, )L, )
where « is short for
k=[(A2-2)2-2]-1. ©)
Contact with Wilson’s action is established by identifying
k=36/(1+6), Q]

such that for small B,z ~ 1 + 38 try(Uy, + U;v — 2) and for large 8,z ~ exp {—trp log[1 — %B(Uw + UZV - 213
The first limit is the same as Wilson’s. In the second limit U,, = exp(iag4 u) is squeezed close to the unit matrix
such that

1-U,,~3a%?FZ, ®)
is of the order 1/8, where a is the lattice spacing and ¥, =V, 4, -V A4, + igl4,.4,]. We can therefore write

[ o) ~ e~ T ylosli + 1a'er2,0 ) ©)
X,u<v oo X.u<v

Setting § = g~2aP~* and =, =4~ [ dPx, the formal continuum limit ¢ -0 at fixed 7, looks the same as Wilson’s

X+U )(+ﬂ+l,’
(o] o
@300 B0
. @® o
X= X X+t
Fig. 1. The fundamental subgluon fields living on the inside
X @) corners of the four plaquettes adjacent to the point X (fora
Bgr ) 0 ;
" (S given plane u < v). The fugacity factor (4) contains the
shifted fields at the positions marked by o.
X-T
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1
[T 2, (x)~ex (— 2 1 42F2)—>ex (—— 2 [dPxp? ) (10)
X u<v ( ”,1)( )) p x.4<v 2& 4 M (Y 2 w<v f uy
For a given a, however, the partition functions are different, even for very large @, since only the small weak field
fluctuations have the same Boltzmann weight.

We now show that our model possesses a colorless collective field representation. For this we integrate out the
¢f2 fields in Z and find

4
A +
Z=[(2 -2)2-4]Mp xﬂl [ 460 @) don))exp (—-2— E o) o) )exp(N 3_1: wN(J“J“)), (1)
u<v u<v

where NV, = 3D(D — 1)LP and

LGRS (§ @00+ )" + 000 + ), ()"
+ T (@09 + o260 + 08 + ol 12)
v<u

and Nw;(JJ) is the usual U(V) integral
exp [Nwy (I )] = de(x) exp [NV tr, (U*fJB + h.c)] . (13)

The partition function (11) represents gluon dynamics entirely in terms of fundamental subgluon fields ¢ff3 ().
In the literature one can find two alternative expressions for the function wy(JJ *). One involves the eigenvalues
of the matrix JJ* [8]. Defining z, =2Ny/x, and the matrices Mfllﬁ) =z 8- llﬁ_ 1zy), M(azg =(z az)ﬂ_ L Brower et al.
give the formula

M detm®
exp[Nw(ITH)] = 2V = D/2 ] gy Q20—
k=0  det M2

The other expression by Bars [9] consists of a linear combination of traces of powers, try (JT+Y?, called “mo-
ments”.

1We are I;QW ready to introduce our collective Hartree like fields. For brevity, let us denote the four fields
¢>£w) — ‘1’5; V) by ¢uv’ ¢u,—v’ by b —v , respectively,and introduce the 2D indices m,# running from —Dto D. Then
J,P*(x) becomes simply J Lex)=N-1%, ., w00 + W9, ,*(x)*. If we now form the first moment try(J, u.f;)

we see that this can be regrouped as

1
Vnit Z\;’M Oy %) ¢, PCO_, Pt _, 4Pl +u) = tryp(ab(x)aH(x + ),

(14

where the a,,;#(x) are the colorless 2D X 2D matrices
&, M) =N"19; (X6, (%), (15)

and tr, p, refers to this matrix space. The regrouping of fields is analogous to the Fierz transformation of the four-
fermion interactions which leads to the introduction of meson fields in quark theories [10]. The ‘‘dimensional
transmutation’” from color to link indices occurs in all higher moments

UN(J“(x)J:(x))” =tryp(@*(x)aH(x + w)” . (16)
Thus, using the expression of Bars, we know immediately wyy as a function of a#(x)a=H(x + u):
wy (T, ) = Wop (@H(x)aH(x +u)) . (17)
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For N > 2D there is an even more convenient way of calculating %2 p- If we define the 2D X 2D matrix

T 00 = (ak(x)ar(x + m)t/2, (18)
we can write

try 0,1 = trop(T, T )" (19)
and hencé

wy (I =wy (T, T8, (20)

where the 2D X 2D matrix?u in (20) is trivially extended to an N X N matrix by adding zeros. In the limit N' > e,
we now use formula (14) and calculate

Wy, T 5) =Wy (@ (x)ak(x +u)

o tap [+ ek k(e + ]2 —2D — tryp log {31 + 5 [1+ dat(x)a K (x + )] 172y, 1)

having replaced Juju by aH(x)a—H(x + ).
Let us now come to our first goal, namely that of expressing the partition function in terms of a guage invariant
collective field. This can be come by inserting the following identity

joo oo
1- f Do f@aexp(iN 12 [olr;:n(almn—N’1¢fm¢ln)+0-0.]), (22)
—joo — 0 x5 m,n
m,n,#+1

into Z, which ensures the relation (15). The measure for ozi,m(x) = ocﬁf (x) and ol (x)= o,ll";n(x) is

m mn
! ! ! I )
DD = I—I( 1 doy,, 905, doy,,da,,, da,, d l*n )
xI\ m 4mi/N  m<n (2mi/N)2 .
m#+l m+#—n

Integrating out the ¢, fields leads to
joo oo
Z=[(\2 - 2)? — 4]NNP f Do f Daexp {NLE ;VJZD(a“(x)a—”(x + )
—joo ey M

"’17 IE (O’ () Uy (¥) + ) + ? omnl‘(x)amnl(x)) -2 trop log G'l(o(x))]} , (23)
m<n JI.m x

m,n#*xl m++l]

where

exp[—N tryp log G~ 1(0)]

=1 d<f>mn<x>ews,t,nooﬂ-lexp(—A T 0mn® =} T ot @om®). g
m+#—n m¥—n nf::,n;nil

For N - oo, the collective fields omnl s Oy n’ are squeezed into the energy minimum *2 For symmetry reasons, this

#2 Opserve that the number of integration variables in (23) is ~D3 while the exponent grows as ~ND2.
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may be assumed to have three order parameters depending on whether the two plaquettes ml, nl with common

link / are orthogonal to each other (0, , &) parallel to each other (o), &), or folded on top of each other (o, ®). A
straightforward but tedious calculation produces a mean-field energy density

—BfIN=1D(D — 1) 1og[(A2 — 2)2 — 4] + D(D — 2)([1 + 4oy + o — 20,)211/2 — 1 —log{3
+5[1+ Hag + oy — 2¢)211/2 1) + DD — (1 + 4oy — )2 12 — 1 —log {5 + 5 [1 + 4oy — &)2] 1/2})
+D[{1 +4fag + o, +2(D — 2 ] 2}/2 — 1 —log(s + 5 {1 + 4[eg + o +2(D - 2) ;] 231/2)]
+2D(D — 1)(ogeg + 0,0) + 4D — (D —2)0,0; — DD —2) log(A + 09 —0,)

—$D(D — 3) log(A + 0 + 0, —20,) — DD — 1) log(A + 09— 9 )— D log[A + 0 + (D — 2)0 ]

—(D-1)log[A+og+o +(D—4)o,] —log[A+og+o,+ 2(D —-2)o,] . 25
Its minimum is given by
00=_4/[)\+(7\2_4)1/2] R 0”=ol=0’ a0=()\2__4)——1/2’ a||=al=0’ (26)

and has a free energy
~8fJN = 3D(D — 1) log[(\2 —2)% — 4] —2D(D - 1) log[zA +3(A2 ~ 9)/7]. 27)

The vanishing of the ||, 1l order parameters implies the absence of non-trivial surfaces in the N > e limit of our
model. Therefore, the solution (27) has the same A dependence as what would have been found by applying Gross
and Witten’s method to our model in the two-dimensional case (apart from the factor $D(D — 1) which they would
be unable to obtain).

Notice that, contrary to Wilson’s, our model has no phase transition in the limit N = o (caused in this model
by the infinite group space [3]). The reason for this can be found by looking at the high temperature series which
consists of surfaces associated with the different group representations in the character expansion of z( ») [11].
In our model there are the Young tableaux (n,0, 0, ..., 0) with dimension &,, = (N - 1) - N"/n!. A non- self
intersecting surface of area 4 and genus g contribute with a weight z(ﬁ)”Ad2 gd A where z(8) € [0, 1). It is the
last factor (absent in Wilson’s action) which suppresses all non-trivial surfaces.

The simple collective field properties of our model could make it a useful tool in developing further analytic
approaches to gauge theories.

The analogy of the coupling of the subgluon fields in (4) with that of quarks may be a sign that these fields
are more than just a convenient mathematical tool for studying the NV - oo limit. This is also suggested by the fact
that out procedure is precisely the color analogue of Gell-Mann’s way of decomposing flavor octet objects into
more fundamental flavor triplet substructures. More speculatively, our subgluons could even be the Bose partners
of quarks in an as yet unknown supersymmetric theory of fundamental particles (i.e. quarks could be subgluinos).

The details of our calculations will be published separately.
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