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Summary. - We prove that a grand-canonical ensemble of random loops without
spikes (i.e. without immediate backtrackers) obey a free disorder field theory with
a mass parameter, on a simple cubic lattice,

m? = exp [¢/T]— 2D + (2D — 1) exp[— &/T],

where ¢ is the energy per link and D the spatial dimension. Thus the lines proliferate
at a temperature

T, = gflog (2D — 1)
as one might naively expect.

A free ensemble of unoriented random loops (1) is known to be described by the
free scalar field theory (2)

_ do(x) 1 _ N s
(D Z= l;[fvﬁ exp [— Eglsﬁ(x)G Ha, x') (2 )] s
where
(2) Gz, x') = 6x,x' - sz,x'

is the lattice Green’s function, H, ., the hopping matrix, and 2 the fugacity of the

(*) Supported in part by the Deutsche Forschungsgemeinschaft under Grant No. K1 256/11-1.
(*) The mathematic of random walks is described in M. SPITZER: Random Walks (Springer, Berlin,
1970); M. BARBER and B. W. NiNHAM: Random Walks and Restricted Walks (Gordon and Breach,
New York, N.Y., 1970).

(®) The random loop content in a ¢(x) field theory was first discussed extensively by K. SYMANZIK:
in Buclidean Quantum Field Theory , edited by R. JosT (Academic Press, New York, N. Y., 1969).
For mathematical aspects see D. C. BRYDGES, J. FROHELICH and T. SPENCER: Commun. Math. Phys.,
80, 892 (1983). Disorder ficlds are extensively used in H. KLEINERT: Gauge Theory of Stresses and
Defects (Gordon and Breach, New York, N. Y., 1985).
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loop elements. In terms of the energy & per element,

(3) z=-exp[— &/T].
On a simple cubic lattice,
D D
(4) Hx,x’ = 2 '5x,x'+i = 2D + z vz Vz‘ »
=1 =1

where ¢ = 1, ..., D describes the D oriented links pointing to the next neighbours and
Vip(@) = p(x + i) — g(x), V,p(x) = p(x) — plx — i) .
Hence the mass of the ¢(x) field is given by

1
(8) m2=—— 2D
2

and turns negative if the temperature becomes larger than
(6) T, = ¢/log2D.

Since the exponent of (1) is quadratic in ¢(x), we can integrate out the ¢(x) field and find

(7) Z = exp[Z,],
whereo
(8) Z,= — }trlog G—1

is the one-loop partition function.

The purpose of this note is to find a similar field-theoretic formulation for an en-
semble of random loops which are not allowed to have spikes, i.e. to back-track on
a link they just have passed (*).

In order to restrict certain movements in an ensemble of random walks (3), it is
uscful to re-express the partition function in terms of complex link fields w,(x). They
are introduced via the trivial identity

)d
@ T [ e — vE) o) —VEdte ).

x,4 x,%

where f dy,dy? means f d Re wfd Imy. Thus we rewrite

d dy
(100  Z= I‘[f jz’: f pila) d”’z Ay i) dyy ()

1
oxp |5 R0 - VEE sente) + vt )] exp [~ Stwnn)].

x,7

(*) Individual lines of this type are well understood ).

(*) H.N.Y. TeMPERLEY: Phys. Rev., 103, 1 (1956); J. Giru1s: in Proc. Cambridge Philos. Soc., 51,
639 (1956); C. DomB and M. E. FISHER: in Proc. Cambridge Philos. Soc., 54, 48 (1958). For a recent
Monte Carlo study of individual lines sce B, BeRaG and D. FOERSTER: Phis: Left. B, 106, 323 (1981).
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Performing the ¢(x) integration gives

dy,(x) dy* 2
an 7= T o [—zw;!%x)wi(x)] exp[fz(z(w,-m)+w;*‘(x—i)))]-

X1 2 x z

Defining y_;(x) =y,(x — i) for ¢=1,..., D, we work out the second exponential as
follows:

(12) exp [g > [wa@)® + vl (®)® -+ 2p4(%)9f ()] +

x,7

+ &Y [y vi) + vE(a)pEia)] 2 > %—(x)wi(x)] .

x,i<<j X,i57
Expanding this in a power series gives

om(x,p,v)

(13) I

. 1
x,uzy (m(x,,u,ﬂ)=0,1,2,... m(x’ U, 'V) .

) H [(%)m(x,i,z')(%)m(x,—iri)].

x,7

11 [wi(x)Zm(x,z‘,i)wfi(x)Zm(x,—i,—i)wi(x)m(x,i,—i)wiki(x)m(x,—i,i)].

x,1
© TT [pataymmis Dy (aymenisdyimes, =iy (eymoes—i=i] [T [ ()msby# (gymes.om9].
x,i>7 x,i%]

Here m(x, i, §), m(x, 1, — ), m(x, —1,5), m(x, — i, — j) can be interpreted as ocecu-
pation numbers of pairs of links emerging from the point x (see fig. 1).

m(x,i,j)

m(x, i)
(= @ ! N e -9
x a——————g m(x,i,i) mixbi=iy=ile g  m(xtiyiy)
x+i
x+i

m(x,i,—j)

Fig. 1. — Illustration of the hook occupation numbers.

For brevity, we have used the symbol m(x, p, v) With p= 44, v = 4 running
through oriented and oppositely oriented links. Geometrically, a configuration of
m(x, g, ») with u >» may be pictured as an ensemble of hooks with corners situated
at the point x (or the midpoint, for the stretched hook 4,4). Each field y,(x) and
y¥(x) occurs with total power

(14) n(x) = 2m(x, 4, 1) + m(x, 3, —9) + 3 (m(x, i, §) + m(x, i, — ),
J#L
(15) ni(x) = 2m(x + i, — i, — ) + m{x + i, 4, — 4) +
+ X (i + i, — 4, — ) + mix + i, — 4, §)
74
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respectively. It counts the different ways in which a link is occupied by hooks, as
illustrated in fig. 1.

By rewriting the partition funetion in the form

amlxy,n) 1\ 2 (e, g, i)+m@,—i,—1)
(16) Z= 11 Z IR (_)x,z .
x, m=v \m(x,u,9)=0,1,... mix, p v)\2

dy de*
11 [ f PE exp [—w*w]w"""’w*“?‘”’],
T

x,%

we see that the integrals over dydy* play the role of knitting together hooks if
their numbers of like elements on each link matches, i.e. if n,(x) = nj(x).

Among all these hooks, there are also the immediate back-trackers or spikes. These
are counted by m(x,i,i) or m(x, — ¢, —i). They are accompanied by a factor

1\ 2 (mtx,i, ) 4miw,—i,—)
(5 ,

since the branches of the spikes are indistinguishable.

If we want to construct a disorder field theory for random loops in which these spikes
are forbidden, we simply have to omit in (16) the sums over m(x, 1,1), m(x, — 1, — ).
Going back to the exponential (12) we see that this is achieved by omitting the terms

pi(x) + p*3(x) in (12). The partition function of random loops without spikes is,
therefore,

d dw.(x)do*
(17) Zno spikes — 1_[ [f 5;5:7)] ].—.[ [J‘w—z(x.)ni@] [— ’s Z ¢2 x) le’f(x)%(x)]

2,4

'eXp[\/EZrﬁ x)(wi(x) + ¥ x—l))——Z(w ()% + vi(x— 1) )]

x,z

Using translational invariance, the exponent can be rewritten as

1
(18) ¥ ¢ + ‘g Y (vil®) - v7(@)($() + (x +8) +
+ ? 2 (vila) — vi(x))(d(x) EWHCAEE : 3 (wilx)? + yi(#)?) -

Thus, if y}, 2 denote the real and imaginary parts of u;, we have
(19) 3 ¢%x) + VZE X vi®)(b(x) + d(x + ) + ivze 2 vi®)(s(x) — d(x + §) —

— Y [+ 2)pix)? + (1= 2)pi=)*].

After a quadratic completion, the fields u}**(x) can be integrated out and we obtain

(20) no spikes — =4 Hf eXp [S[¢]] ’

7
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where
A= 4/1 =200 /T + 222D - 1)~%
and
(21) 8[g]l = — % 3 ¢(%)G(x, x') p(x')
x,x
is the field entropy with
(22) Gi(x, a') =0,y y— BH, = Oy e —————
s = Yx.x 22" = Yx,x 1+ (2D — 1)z EX N

being the inverse propagator.
Thus, apart from a wave function renormalization A, the random loops without
spikes follow again a free disorder field theory with a modified fugacity

z

#9) Tirep—ne

The mass of thig field is

bo

(24) M= — 2D =

— 2D+ (2D —1)z.

Nzll—'
wl—=

This shows that such an ensemble undergoes a phase transition if the temperature
exceeds

- 1
(25) T, = e/log—z— = gflog (2D — 1} .

C

This value was to be expected on naive grounds, since log (2D — 1) is the entropy of
a single step in a random walk which cannot back-track right away.

Notice that this result implies the partition function of the ensemble without
spikes (4) to exponentiate as

Z = ABXP [Zl]’

no spikes

where Z, is the single random walk with spikes, but with the modified fugacity Z.

(*) For fleld theories with the stronger restriction of complete self-avoidance see T. Horsiss and
H. KLEINERT: Phys. Lett. 4, 105, 60, 463 (1984).



