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Abstract. We construct the two-dimensional quantum field theory which governs an
idealised ensemble of dislocations and disclinations, including their higher gradient elastic
interactions. The action contains four gauge fields of phonons A, C; and H, D, coupled
minimally to two complex Higgs fields ¢;, ¢, which are the disorder fields of dislocations
and disclinations, respectively. Because of the close analogy with the quantum field theory
of electrons and photons, called quantum electrodynamics (QED), the new theory of defects
and phonons may be named quantum defect dynamics (QDD).

The interaction of defects in a crystal is described by field equations which bear a
close resemblance to the Maxwell-Lorentz theory of electrons [1]}. The electromag-
netic fields B; and E; correspond to the stress tensor o; and the momentum density
P, respectively. The local coupling of the gauge field A, with the conserved electron
current J,, corresponds to the coupling of the stress gauge field with the conserved
defect tensor.

The principal difference between the two systems lies in the fact that electrons
describe world lines in 4-space with currents

J, = J ds dx,/ds 8@ (x—x'(s))
L

while defects form lines in real space, such that in four dimensions they form world
sheets. In two-dimensional systems, however, the analogy between the two systems is
very close: defects are point-like and form world lines in spacetime just as electrons.
It is the purpose of this paper to exploit this analogy and perform, in the defect system,
the same steps which lead from the Maxwell-Lorentz theory to quantum electro-
dynamics. The result will be a simple field theoretic action which governs the quantum
phenomena of defects and phonons. It may be called quantum defect dynamics (QDD).
The defects appearing in this theory are idealised objects. They can freely glide and
climb. Processes which impede the motion of real defects [2] must be included
separately. A similar treatment has been given before to vortices in films of superfluid
helium (quantum vortex dynamics) [3] which the reader may find useful to read before
studying the present more complicated defect problem.

1 Supported in part by the Deutsche Forschungsgemeinschaft under Grant No K1256/10-1.
i See also [1a].
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The starting point is the quantum mechanical partition functiont of stress fluctu-
ations in the presence of plastic distortions

Z=J Pu(x) exp(%&f) (1)

with the action
o = J d3x[%(50“i - Bmp)z +%9(60w - KOP)2 - %(aiuj +tou; — 3ijp - BjiP)2

_%A(aiui})_ﬁﬁp)z_2#'12(5@ - Kip)z]- (2)

We have used natural units in which the transverse sound velocity C,=(u/p)"'* and
the shear modulus u are both equal to one%. The constant /* controls higher gradient
elasticity (we have omitted gradients of the strain tensor since they produce no
interesting new qualitative structures). The gradients of @ are necessary in order to
acquire sensitivity to disclinations [4]§. The plastic quantities 8., x,." are given by

Bijp(x) = SI(S)(bj _errxr)

ki (X) = eud P+ & ¢ =8(85)Q 3)
Bmp(x) = =05 (S)(b; — Qe x,)
Ko (%) = £doPBu’ + bo" $o" = — i (S)Q

where b; are the Burgers’ vectors, () is the Frank scalar, and S is the time-dependent
Volterra cutting surface, which in two dimensions is really a line and v, the velocity
with which § moves through space. The & function §;(S) is singular on S and points
along the normal vector. Since S is a line, we may also write 8:(S) as wg,-jci-(S) where
8;(S)= [ds dx}/dsa(z)(x—x’(s, t)). We shall keep the notation (3) because of its
analogy with the three-dimensional situation.

The stresses and torque stresses are introduced by taking (1) to the canonical form

(4]

Z=J‘ Pu,{x) J Do;(x) J’ Dw(x) J Pri(x) I Dp; j D exp(—if; &ica,,) (4)
1 1 1{s, s 2 ., P
Aan = J d3x{[—5pi2_% 7T2+Z(0'i' “1TVV oy ) +ﬁ T ] — 03— g0 — By')
=73 — (f’ip) + pi(Gou; — ;30;‘?) + m(dow — ¢0P)}
= sty + St (5)

where the elastic energy depends only on the symmetric part 5’,~j of o The integration
over the antisymmetric part enforces the connection between @ and %a,-jaiuj, modulo
the plastic part 36,8,". Integrating out #;,(x) and w(x) produces the conservation laws

003 = doP; 0iT; = 3T — ExiOpr- (6)

+If external currents are added, this object permits calculating all correlation functions. The sources are
omitted for brevity.

 Notation: x°=r=time, x=(x")=(x', x*) =space, x=(x*)=(x°, x', x?), d*x =dx®dx'dx?, 3, = a/ax".
§ For static interaction energies of defects within higher gradient elasticity, in three dimensions, see [4a).
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They can be fulfilled by introducing the phonon (or stress) gauge fields A, H, ¢, d;;:
oy = E,-kakAj +60C,'j Pi= aicij
T = SikakH_Ai+a()d,' w =aidi+81:icij. (7)

The gauge transformations which leave this decomposition invariant are somewhat
degenerate, due to the reduced dimensionality of spacet:

A;»> A +3:£+ 3\, H-> H+9,¢ (8)

Ci > € — Eixdi A di>d —ez0 £+ A, (9)
It is useful to introduce A, = eyc;, H; = €;d,, such that (9) becomes

Ay A +aA; H,» H;+d,£+ ¢, (99

Inserting (7) into (5), the interaction with the defects can be brought to the form

HAine = jd3x{Ai(6kjakﬁji - (biP) + H(ekjakd)jp)
— Ayea(3oBy’ —0iBoj + eybo’) — Higa(3odr — 1o’ )] (10)

The sources
o = g8 — 0= exjord;”
Jy = €a(80By” =380+ Eybo”) Si = £4(9oP) — diepo”)

are identified with dislocation density, disclination density, and their respective cur-
rents. Inserting (3) we find explicitly

&y (x) = 8(L(1))(b, — 0y x,) 0(x) = 5(L(1))Q
Jij(x) = _Diﬁ(L(t))(bij —ngrxr) S:(x)=—v,6(L(1))2

where L is the boundary ‘line’ of the Volterra cutting surface S which, in two dimensions,
consists of the two end points. The 8(L) function is positive on the one and negative
on the other end point.

The densities and currents obviously satisfy the conservation laws

(11)

(12)

6,],1 =60aj—8j,~S,- 8,-5,- 2800. (13)

These are necessary to ensure gauge invariance under (8) and (9’).

Notice that the plastic quantities in (11) are gauge fields on their owni. Defect
gauge transformations correspond to changing the shape of the Volterra cutting surface.
Indeed, under S—> S’ we find that §,(S") = 6,(S) —6,6(V) where V is the volume (here

area) over which the surface S has swept. From (3) we see that under such a change
By > By +a:N, — e;M ¢ > ¢’ +oM (14)
1
Boj = ﬁij+aOIV:f Bo > do +3eM

T For the full three-dimensional gauge transformations in the static case see [4].
¥ The double gauge properties of elasticity and plasticity are discussed in [5].
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where M =—8§(V)Q, N,=-8(V)(b;—Qe¢,x,). These transformations obviously pre-
serve (11). Separating out self-energies of the defects [6-8] we arrive at a partition
functiont

hon

] .
zZ= I DADHIASH, © [A, H, A, H] exp(% ﬂg)
X exp(% J dP*x(Aa; + HO — Ayt — H,-S,-))

Xexp[—%J‘d3x(2%_1(ai2—1y2)+2L82(02—S,»2))j| (15)

where o is the square bracket of the action (5), expressed in terms of the gauge fields,
but modified at short distances, such as to separate out the core energies in the last
line. The symbol ®PP°" denotes a gauge fixing functional for the phonon gauge fields.
The defect partition function (15) is the analogue of the Maxwell-Lorentz theory of
the electron

phot 1 i
Z= J’ 2A, [A,] CXP(E J d"xF,wz) exp(% J dt(e —A,x,))

im

xexp(—;'—[dt(l-xz)llz). (16)

In order to turn (15) into the desired quantum field theory of defects and phonons we
have to remember how the quantum field theory of electrons and photons may be
obtained from (16). All we have to do is sum in Z over all random orbits of electrons,
with specific constraints, such as to respect Pauli’s exclusion principle. In the present
case of defects we may simply sum over all non-backtracking world lines of dislocations
and disclinations in the (2+1)-dimensional spacetime. Explicitly, this is most easily
done by remembering that in a proper crystal, the plastic quantities 8,°, ¢.” are really
discrete. For example, in a simple cubic lattice with lattice spacing a =2+ (say) one
has B; =2wn,;, where n; are all integer numbers [4-7]. They present the jumps in the
position variable u; across the links i, thus parametrising an ensemble of Volterra
cutting surfaces S. Similarly, we discretise ¢,” to parametrise the jumping surfaces of
the rotation angle w. Taking a similar lattice spacing also for the time variable (which
is taken to be zero at the end) the surfaces undergo a hopping motion as a function
of time.

We are therefore led to describing the ensemble of all fluctuating defects by
performing, on the second and third exponential in (15), the sum over all these jumping
numbers, X, .. m, m- Since these are integer valued gauge fields, the sum requires a
gauge fixing functional <I>def[n,-j,n0,-,m,-,m0].

It is now straightforward to transform this sum into a disorder field theory of
dislocations and disclinations. The technique for doing so has been developed before
[4a,7, 8] and is explained in detail in reference [7].

T For brevity, we have omitted another possible invariant J;;J;,.
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Four steps are necessary. First we observe that on the lattice, the defect sum

def

VARES Z b [nij’ Ny, My, my]

{"ij,"m.mij,mo}
><exp[i J d3x(~——1 (a.-z—f.-'z)—_l (6*°—87)
h 2, v 2¢, !

+A,a,.+H0—A,,.Ji,.—H,.si)] (17)

can be transformed, via a simple manipulation [8, 9], into a dual form¥

Zow= Y B[y, Aoy 1, ’ﬁo]HJw dy.»(x)l_[ro dé(x)

iy Fontit i} xidw 2T % J o 27

i . ~
X E57{1’(% J- d3x[%31(vo‘)’i —A;— 277”0:')2 _%El(vin - Aij _277'":';')2
+%82(V05 - H _27Tr;10)2 —%EZ(V,-S + Su‘y] - H,' - 217";[1)]) (18)

where V,, V, are lattice gradients and the integrations over vy, 8 ensure the defect
conservation laws (12). Second we remove an integer valued field ]\7}, M from ¥» &
and restrict these angles to the interval (—, #) only. The removed gradients V,j(f,-, v.M
can be absorbed into the integer valued gauge fields making the sum over 7, s, mm,
in (18) unrestricted (i.e. we can drop o).

Third we use the Villain approximationi

Z exp(_%ﬁ (V}Ly —Zﬂ.ﬁy.)z =~ val(ﬁ) exp(IBV—l(ﬁ) Cos V;L’Y)
= Ry1(B) exp(Bv1(8) Re U,(x) Ug(x+p)) (19)
to rewrite the exponents in (17) in a two-vector form where

Ua(x) = (cos y(x), sin y(x)).

Finally, we use the identity

(U, U= r du du* ro der d"ﬁf(u, ut) exp[— e (u~ U)+cc)] (20)

—o0 —ico (2771)2
to rewrite the integral of (19) over y as follows:
o0 10 da da+
Ry dud +‘[
ot | dwa | S5S

xexp[Bv- Re u™ (x)u(x+p) —2a u+cc)+log I(|e))]. (21)

T The numbers A, i, are integer valued gauge fields which are dual to the defect fields n,,, m,. They

represent the vortex lines in the disorder fields of (24).
I With Ry-1(B) = (I,(B)vV2mB) ", B=—1/(21og(1,(B) v/ I(B)v—)); Iy, I, = associated Bessel functions.
For more details see [11].
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Performing these four steps on (18) leads to the following disorder field theory of the
two dislocation fields and the disclination field:

Zoer[] jm du, du;"(x) Jm dv dv™(x) J.m da da (x) jm dfd{"(x)

x,i —joo (2771)2 —joo (2771)2

—co —oo

X exXp —1[(%—) . Z Re u," (x)u;(x +0) exp(—iA;(x))

+ (%) | Y Re v'(x)v(x+0) exp(—iH(x))

_(ﬁ) , 2 Rew(x)u(x +1) exp(—idy(x))

X1

- (%) | Y Re[v"(x)v(x+1) exp{—iH,(x))u,(x)

+0" (x)v(x +2) exp(—i Hy(x))uf(x)]

—3 ). (e u;+ v+ ce) —Z log In(|a;|) =Y log Io([§|):l (22)

where we have dropped trivial overall constants. It is useful to define combinations like

Dl_A.juj(x) = u(x+i) exp(—iA;(x)) —u;(k)

_ (23)
D Miuy(x) = uy(x) — uy(k — i) exp[+iA;(x —i)]

as covariant lattice derivatives. Then it is easy to perform the following manipulation:
2 Re u (x)u(x +i) exp(—iA,{x))

=1 22: {w;" (x)[w;(x + 1) exp(—iA;(x)) — u;(x)]+ u] u, + cc}

=3 [uf(x)D?"'Uj(X) + (D,Aifuj)"'"uj(x) +2u; u;]

=3 T[] (D}~ D)) + 2 w]

=Y u (x)(1+ D,-A"J'D,-A"f/2)uj(x). (24)

Similarly we definet

D p(x) = v(x+1i) exp(—iH;(x))u(x) — v(x)

~ (25)
D"*v(x) = v(x) —v(x — i) exp[iH;(x — i) Ju(x—i).

+ This satisfies (D — D)u{x) = DDv+[|u[*(x — i) —1]v, in contrast to D*v of (24) where the second term is
absent.
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Then the first two terms in the exponent of (21) become simply
DBy*Dy* B5,"D
(ﬂ) Y Re uf(x)(l +~—~°—°) u(x)+ (2) Y Re v(x)(l +—°—-£)v(x)
h vlixj 2 h vt x 2

- (8?) L LRe u,-*(x)(z+% ) DiAffo"")“‘(")

D/Hu_p Hy D Hz":_[)- Hyuy
,_(%) Y Re v+(x)(2+ : 5 122 5 Z )v(x).
vl x
(26)

For smooth field configurations and small gauge fields, the covariant derivatives
D5, D, . .. become simply (3; —iA;). The last covariant derivatives in (26) which
account for the coupling between dislocations and disclinations via the first defect
current conservation law (13) always have a non-trivial form. Even if v(x) is smooth
and H; are small it reduces merely to

D *iv(x) > [u;(x)(3; —1Hy) + u; — 1]o(x) +3u;(x)[ (8, — 1 H,)*+ 1, H; Jo(x) +. ...
Df"p(x) - [uf(k—-i)@,—iH)+1- uf(x—i)]o(x)
—quX(x—[(e; —iH;Y —ig;H.Jvo(x)+. ... 27

In the cold phase, in which the expectation of dislocations is zero and (u)=0,
disclinations have a vanishing next-neighbour coupling in (26). In the molten phase,
however, where u > 1, they move like ordinary particles with the usual gradient term
(ai _iHi)z-

If the system has a second-order melting transition, which in two dimensions could
be possible, due to quantum fluctuations, we can perform, close to T,, a Landau
expansion and obtaint the following partition function

phon

z= J DuDut Do@v* BADHBA,DH, ® exp %.szf
with
1

1 s v o,
A= J d3x|: _'Zl"piz_% 77'2"'%(0'1‘1'2_:6 0'12) +W Ti2

E . .
(%) don-ia)uP-Yo,-ia)ur
\Z

£ ; .

+ ﬁ(‘f) B (%l(ao_ 1H)”|2_ (u+ “)zk)[%l(al _1H1)U|2+%U+U]
v

= (uy+ uF) 38, —iH) v +30 ™ 0]

1 P 1 S
_i(uz— u;k) ‘é—i U+(61 _iHl)U _i(uik - ul) E v+(82_iH2)v)
MR L R | : (28)

t After integrating out «; and { in (22).
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This partition function governs the quantum phenomena of defect systems in the
continuum limit. The quantum statistical mechanics can be studied in the usual way
by considering time to be an imaginary quantity with periodic boundary conditions
on all fields in the interval 7= —it€(0,1/T).

- It must be realised that, except for extreme quantum crystals, the melting transition
is really of first order and the correlation lengths of the disorder fields never grow to
infinity. This precludes one from taking a proper continuum limit and the disorder
field theory must be used in its full lattice formulation (22). The limit (28) is, however,
structurally interesting since it establishes the close correspondence of QDD with QED
which for ‘scalar electrons’ would read

phot i 4.1 2
Z=\|92A, ®[A,])exp & d*xsF,,

i

[ @i, -6l -imleb —lalell  29)

X J DoDe™ exp(

The new quantum field theory will hopefully be useful for understanding the dynamic
plastic properties of crystal as well as the defect mediated melting transition.
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