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Recently, there have been three determinations of the reduction of curvature elasticity due to thermal fluctuations. The
results obtained by Helfrich, Peliti and Leibler, and Forster are kg =k —(T/47)] 108(gmax/qmin)» With =1, 3, and 2
respectively. We discuss the differences between the calculations and show that, despite a careless handling of the path
integration measure, Peliti and Leibler’s result is correct. Forster’s paper, on the other hand, has the correct measure but the
wrong algebra. As a further result, the gaussian curvature constant is shown to change with temperature as &g = & +(7/47)

x4 IOg( Imax //qmin )

In order to compare different membrane experiments, Helfrich [1] estimated the softening of the curvature
elastic constant due to thermal fluctuations to be

kg =k — (T/4m) log (9max/qmin)- Q)]

By looking at the same problem in two different ways, Peliti and Leibler [2], and Forster [3] found an enhance-
ment by a factor three and two, respectively. Naturally, the question arises as to which of these three is correct.
All three authors consider the curvature energy

E=%de2£ VE (cq + ) +'Zfd2‘<’\@c102> @

where ¢ + ¢, is the mean, ¢y ¢, the gaussian curvature, and g is the determinant of the metric of the surface. If
x4(¢) witha =1,...,3;i = 1, 2 is the parametrization of the surface, the metric is

gi]-=aix”3]~x" =Dl-x"Djxa. (3)
The curvatures are obtained from the second fundamental form

DI-D]-x“ = Cijn" (4)
(where D;v; =8 iV — I"iquvk is the covariant derivative and #° the unit normal vector of the surface) as follows*!
Hence (2) can also be written as

E=Ey+Eg =%« [d’Ve DD +1k f 4% Vg (D*x°D*x”® - D;D'x*D, D'x“), 6

which shows that the second term is a pure surface energy, proportional to the Euler characteristic 2 — 2k (k=
number of handles) of the surface. Helfrich (H) and Peliti and Leibler (PL) go to the special parametrization in
which £1, £2 are a euclidean base space and the surface is given by a vertical displacement field, i.e.,

! Supported in part by Deutsche Forschungsgemeinschaft under grant no. K1256 and by UCSD /DOE contract DEAT-03-81ER40029.
2 On sabbatical leave frqm: Insl@tut far Theorie der Ele:mentarteilchen, FU Berlin, Arnimallee 14, 1 Berlin 33, Germany.
*1 The Ricci tensor is R/ =ccy - ¢; IC,] and R =R;’ is the scalar curvature,

0.375-9601/86/$ 03.50 © Elsevier Science Publishers B.V. 263
(North-Holland Physics Publishing Division)



Volume 114A, number 5 PHYSICS LETTERS 24 February 1986

El
x“(&)=| £ @)

u(t'g? )|
Then

10 —uy S
aixa= 0 1|, na=(1+ul_2)—1/2 —u, |, gij=6i]'+ul'uj: gllzal]_uiu]_/(l.l.u%), g=1+u12’

73] U2 1 (8)
where u; = 0;u, and
Cy=uglQ+up)V2,  Cl=—d;nl,  C=—d;n'==9;u;/(1 +up)?], ©)
and hence
Ey =5x [d% (L+uP)V? (3, [ /(1 +up)V 2] )2, (10)
Expanding this up to the quartic power in u
EM=‘;'K fdzg (u,%-—-;-u;?‘iu,z—2u,-iuku,uk1 +) (11)

and insertingu = U + ¢ it is easy to calculate the quartic fluctuation energy up to second order in U as follows
Ey =5k [d% (U} + 2Uye;+ ) = (Ufe} + Ul + 4U,Ujee)

— 22U Upereg + Uy Urey e + Uy U ep € + U Ui + U Uy i€y + UpUgeii6) .1, (12)

The authors H and PL differ in their treatment of the fluctuations. PL assumes a measure for the path integration
S Du (&) which leads, in lowest order, to the equipartition theorem

T d%
(e() e(0) =2 omp

exp(ik-x) k=4,

and thus, in our notation, to a renormalized energy

Efy =4 [ [k U} 3 TWRL + UF Q) — 2T(UyUp Ly + Uy Uy, (13)

where

_rd%k o1 1 a2k keky
”f(z—n)g 5 = 57 108@max/min):  Lii f(2 S =385iL,

d2k d2k kiki y
Q= Q
are one-loop integrals with logarithmic and quadratic divergences. Hence « is renormalized to
KR =k = TX3L =k — (T/47) X 3 108(@max /A min)- (19
Apart from this, there is a thermal generation of negative surface energy

Eg=—3710 [’ Uf =310 [a% (1+UHV2 +3 10, (15)
which PL do not mention.

Helfrich also takes the equipartition theorem (e,-z) = (T/x) L, but neglects the contribution from the last
parenthesis in (12). So, the origin of the discrepancy between his result and PL’s is clear.
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Let us now look at Forster’s calculation. He uses a covariant approach and remains within the general x €3]
description of the surface. Setting x? ->x? + x4 and expanding in 5x¢ gives D2 > D? — 8g¥D; D; — 8T;/kD;,
+ 6g’k6gk1D,-D]- and thus, due to D,-Dfx” Dpx?% =0, the energy

Ey =5k [ Ve {(D%x)? +3 565, (D%)? + 2D (D% — gD, D;x") + [ 4 5¢76g;; +3 (5g')*1 (D*x*)?
+8gk, D2x2(D2sx —88YD;D;x?) +(D2%6x9)? + (68YD;D;x)? + (8T Dy x9)2
—2(D%xDyx® + D% Dy 8x %) 8T, — 2(D26x 25 g'ID; Djx @ + D2x 8 gD, D, 6x )

+25g'k8 g, 'D; D;x°D2%x +...}. (16)

The third term from the end can be combined to — (8I}%)?2 (since 8T = D26x2D; x9 + DZx9D; 6x9 +...).

In order to isolate the physical contribution to the fluctuations he notes correctly that only the part of §x2
which points along the normal vector is physical. The transverse part corresponds merely to a reparametrization
of the surface. Thus he sets

8x2 =pm. (17

He further notes that as long as one wants to calculate the influence of the short-wavelength fluctuations upon the
long-wavelength background field, it is sufficient to consider only terms of the form VDzDZV, vD;Dv. Then he
drops all linear terms in 5gil- and remains with

82Ey =1« f d25 Ve [(D25x9)2 — (8T;%)? — 2(D2x%6 gD, D; x % + D2x 25 gD, D;6x )

+6gk, D2xaD26x? +...]. (18)
Using 8g;; = D;x?D;x? + () ~ — 2vCj; and n®D; D;in? = — C,-lCl]-, he arrives at +2
82Ey =5 & [ 42 V& {v[(D2D? - 2G,IC; D2 — 4CHCIID; Dy) — (— C2D2 + 4(C C¥l — €V, Cl) D;D)

+4(C;/C;'D? +C CD;D;) — 2C?D2 v +..}

=1 Kf 2% Vg {»[D2D2 - C2D2+2C,iC; D2 v +...}, (19)
which after integrating out » and inserting C,JC]-" = (2 — 2K amounts to the additional curvature energy
Eyg - Ey =3 TTrlog[D2D2 +(C2 — 4K) D21 =T TrlogD? +3 T [ a2 \E Te[D~2(C2 ~ 4K)+...].  (20)

If only short wavelength fluctuations are integrated and the background field is sufficiently smooth, this amounts
to

kR =k — (T/4m) X 2 108(G max /A min)- @21

KR =& + (T/4m) X 4108(q pax /T mmin)- (22)

The first equation gives 2/3 PL’s result. It is easy to find the reason for this discrepancy. The linear terms 8g;; in
(16) are sensitive to the quadratic variations in v and it is necessary to keep the full

68;;=D;6x°D;x? + (if) + D;8x°D;6x% = — 2vCy; + DDy + v2Cy G !, (23)
This gives a further term
v[-3 C2D? +2C CVD,D,)v (2%

*2 We have listed each term in (18) separately to facilitate checking the calculation.
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in the curly brackets of (19) and changes eq. (20) to
TTrlogD? +3 T [d2%VE TxID2 (4 €? - 4K) + 2D~ *CCD; D). (25)

When doing the momentum integrals, the new term raises the prefactor 2 ineq.(21) to 3.
Notlce that (2 g has prec1sely the same tensor structure in C;; as (13) has in Uj; [as it should, since
241/
= 1/(1 + u; )
Even though the correct result agrees with PL it must be realized that this is somewhat accidental. The measure
of integration should be

[ovgt4=11 fav(e) sV (26)
3
This can also be expressed in a parametrization independent manner as
1 ..
1/4 —— {q2 i . kp.xk 27
ﬂ(fdx”g )exp( 5 fd £\g g6x4D; xa8x D;x ) @7

It is useful to find out why the error in using the measure fDu happens to cancel. For this we notice that the nor-
mal variation

g1+ U V2, gl — Uy

x%+6x?=x%+yn? = EZ—V(I+U12)*1/2U2 ~ EZ“VUz (28)
UE) +v(1 +UH) 12 u(®)+v—3vUf

has the parametrization (6) only after going to the new coordinates

gl=g — w1+ VRO 2 U (8) ~ £ — () U, (8). (29)

Hence the energy associated with (28) has the form (10) only in these new coordinates

Ey =3x [ +uHV2(¢y o) [u, (1 +u?)"12])2, (30)

where the primed subscripts denote derivatives with respect to '/ and u' (") = U(¥) + v(¥)/(1 + Uk)l/2 With
(29) we have

OF'H[0g) ~8Y — v, U —wUy, 428 ~ d2%(1 -y U; —vUy),  0p ~ 3+ yUpdy +vUydy, €D)
such that, with respect to the unprimed energy E M there is the change (12), with e replaced by v, plus the follow-
ing additional contributions, all from [ d2§' u

fd2£ (1 —V; U — VUI]) (2 ii ” + 2(]” UkViij + 4UﬁUkVin]' + 4UiiUklkal + 4(jiiUleVkl + 2UiiUv]'jk 1447

+ Uvyv; + AU Up vy + 205 Upovi) + .. (32)
Performing the contractions () we find the additional energy
TL(U;;Ugx — U1 Upy),

which, in this approximation, amounts to 7L X 2K and therefore renders the correct softening of the gaussian
curvature, eq. (22). Besides, there is one more contribution to the surface energy

0 [a U7, (33)
which changes the previously obtained value (15) into — 5 7Q f a2 (1 + Ulz)l/ 2 +2 TQ. A further term of this
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type comes from the measure f(Dugll4 =fDr(1+ U12)1/4. In the exponent this gives% orf d2£ log(1 + Ulz),
thus bringing the surface energy to

E,=-TQ [ (1+UHY? + TQ. (34)

In the covariant formulation, the corresponding energy is contained in the first term of (20) which was due to the
fluctuation energy%x fd2& \/g (D?v)? and reads, in the present parametrization,

1k [ @) ~ 3k [ 4% (1 + UDY? @ - UyUpwy - UiUpwyg + )}
~gk fdzi W +5 Upvi — 20wy +...)

and is seen to generate, via the measure

[ Dvgl® =f‘Dvexp(% 0 [ d% log(1 + Uf)) :

exactly the same surface energy (34).
It was noticed by Polyakov [5] in another context that it is possible to calculate the fluctuation energy

Eg =T Trlog D? (35)
exactly by rewriting it as [6]

Ep=—T [a% [ Lex1e 1) (36)
0

and going to an orthogonal coordinate frame in which g;;(§) = p(§) 8 i and the covariant derivative D?-= (1/\/2)
X (3;4/2 873;) becomes simply p—la,?. Then, under changes o (§),

SEp = de%%_’{ at ¢1D% P |5y =T [ a%¢ ‘%" Jdt(él —(%e’DZIE)=—de2£%3(éle(€az)/pl£> (37
and using the formula in D dimensions [7]

2D/ (£1eP? |g) = (4mey D12 (1 + eR/6 + ...). (38)
Polyakov found

SEg =-deg 8p(1/4me +R/24m + ...), (39)

where the curvature in orthogonal coordinates is simpy R = — p“lai2 log p. The divergent term 1/4me is equal to
(£1£) = 8@(0) =  d2k/(2m)? such that we can replace it by Q. Thus, integrating (39) in p gives

Ep=—T [d% [Qp +(1/487) (3; log p)?] + T X const. (40)

The first term agrees with (34) (since — TQ [ d2¢ p =— TQ f d%£+/g corresponds to —~TQ f azg(1+ Ulz)l/z) and
the second term gives a further finite reduction in membrane energy which is missed in the naive approach via (12).
Notice that in the field representation p = e®, the energy

E = [ d% [Qe? +(1/48) (3;9)°] (41)
is the field energy whose partition function would give the Mayer expansion of a Coulomb gas. The overall sign in
(40), however, is negative.

For completeness, let us include here also the simplest application [8] of the corrected version of (21) together

with the new result (22) [9]. For this we perform the Tr(llD2) for spherical membranes by replacing the momen-
tum sum by a sum over angular momenta
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_ord% o1 1 1 1 1 1
‘e (2m?2 k2 27 108 @max/4min) = 37 41“_,(2z+ Dige1) ™ 20 198 fmax ~ 7 o8 M, (42)
where
Imax
M=3 QU+~
=0

is the total number of modes, which is proportional to the number N of molecules in the membrane. As a con-
sequence, the energy of spherical membranes with no spontaneous curvature has a temperature dependence

E =8mx [1 — (T/k) X-;'-L] — 4k [1 — (T/k)X 2L] = 87k — 4nk — 4w TL =Eq—TlogN. (43)
Thus the size distribution
PWV) = e~ E-pN)T o N e#N/T (44)

happens to be the same as obtained recently by Helfrich [8] on the basis of an approximate treatment of spherical
membranes, similar to his first. There is an accidental cancellation of the renormalization of the gaussian curvature’,
which he ignores, with the factor 3 in the softening of k.

It is gratifying to note that such distributions (of the Shultz type o N% ¢ ~(COnStXN) 16 indeed been used to fit
data from quasi-elastic light scattering [10,11]. For a proper derivation of such distributions, which must include
the spontaneous curvature, see ref. [9].

Let us finally mention that it was not really necessary to keep track of all surface energy terms since membrane
fluctuations take place at constant area [12] which, as we have leamed from the work of Brochard et al. [13]
make surface energies disappear.

The author thanks Professor W. Helfrich, Dr. F. Abud, Dr. S. Ami, Dr. T. Matsui and Dr. Forster for discussions and
Professors N. Kroll and J. Kuti for their kind hospitality at UCSD.
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