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We show that mean, gaussian, and spontaneous curvature constants «, &, and c,k of spherical vesicles change with
temperature by —[7T/8n]a log N, where N is the number of molecules and « takes the values 3, — % —1, in the three cases.
For bilipid vesicles, k, ¥, and ¢, have two sources, the area elasticity of monolayers and the liquid crystal orientational
bending energy. If p € [0, 1] denotes the elastic fraction in «, we find the size distribution P(N)a N7 ~60+4/3 g=constxN
such that for pure liquid crystal bending P(N) & N4/ g=constxN,

In a recent paper, Helfrich [1] points out that the thermal softening of the curvature elastic constants
has simple observable consequences for the size distribution of spherical vesicles in equilibrium. Since such
distributions are in the process of being measured rather accurately [2], it is worth obtaining a reliable
theoretical prediction. If the bare curvature elastic constants are defined as in Helfrich’s original paper [3]

Eomvo= %"ofdzg \/E(Cl te;— 00)2 + "0de§ \/Eclfz, (1)

where (¢; + ¢,)/2 is the mean, and c¢,c, the gaussian and ¢, = 2R, the spontaneous curvature, the energy
of a spherical vesicle receives a contribution

Eeurvo=8mko(1 = R/R,)’ + 4. (2)

Thermal fluctuations lead to a renormalization of the constants k,, K, ¢, linear the temperature and with
a logarithmic dependence on the number N of the lipid molecules in the vesicle.

k=xy— (T/87)alog N, k=k,— (T/8n)alog N,
ek =colro — (T/87)a log N], ¢, =co[1— (T/8mky)(a;—a) log N]. (3)

The parameters a, a, a, will be given below.
Using the renormalized constants (3), the curvature energy becomes
E.=8mk(1—R/R,)’~ T(a— a;)(R?*/R?) log N — 4n&, (4)
rather than (2). When inserted into the Boltzmann factor e "£/7, the new terms give rise to a characteristic
prefactor in the equilibrium size distribution at a given temperature.

P(N) & N -R/R)+ 82N (= e R /RS eyl — (8me,/T)(1 = R/R,)], (5)
where R« VN . Helfrich in his paper calculates a =1, assumes a =0, and obtains for R,=oc0 a

distribution N e “™*¥ which he says to agree fairly well with experimental data [2].
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The purpose of this note is threefold:

First, motivated by the fact that Helfrich’s result for a is at variance with two independent calculations
by other authors (who obtain a =3 [4], and a =2 [5] *', respectively), we show once more in a simpler
way than in ref. [6] that the correct value of « is a = 3.

Second, we calculate the parameters &, o, which govern the change of the gaussian and spontaneous
curvatures. They turn out to be &= —4 + 3= — % a = —1, respectively. The term % was missed in refs.
[1-6]. As a consequence, the prefactor N®*%? in the size distribution (5) of R = oo vesicles is
N3 x ememstXN somewhat different from the result of Helfrich [1] #2. Notice also that our a, — a which
governs the renormalization of ¢, is twice as large as Helfrich’s.

Third, and most important, we point out that the prefactor N/ is not valid for all types of bilipid
vesicles for the following reason. The bending energy of a bilayer has, in general, physically completely
different components: One component is caused by the liquid crystal property of the monolayers. The
molecules are rod-like and resist directional changes. The bending constants of this type will be denoted by
k5", k5", cg. The constant of spontaneous curvature ci is an intrinsic quantity determined by the
asymmetry of the rod-like molecules. The other component has its origin on the area elasticity of the two
monolayers. If the bilayer is bent, the outer layer is stretched, the inner compressed. If K and p are the
area elastic moduli of the monolayers it is easy to see hat the joint bending is governed by the elastic
bending constants >

ki =3(K—n)d?/2,  ®=-2pd’/2. (©)

where d is the distance between the monolayers.

The important point is now that the constant of spontaneous curvature c{ caused by the elastic forces is
not intrinsic as its liquid crystal counterpart. For a membrane in equilibrium it is always equal to the actual
equilibrium curvature ¢ = 1/R. For a flat membrane, c{ = 0 since the densities in the two monolayers are
equal. If the same membrane is brought into a spherical shape, by sonication, the pressures in the inner
and outer layers will, during the formation process, equilibrate in such a way that the inner layer has fewer
molecules than the outer layer (see fig. 1 for an illustration of the different number of molecules in the two
shells). Thus, when deforming a spherical vesicle away from its equilibrium shape, the elastic component of
the bending forces always try to restore the equilibrium curvature (for times smaller than 7). Thus the total
bending energy can therefore be written as follows:

E= %Ke'(cl +ecy— cgl)2 + 3kb (e + c2)2 + (& + &) epe,y

: 2

el 2 el l.c. el

K k%K T

Stk et o | + - (<t)
kS + k¢ K+ il 2

+ (k%" ) e rcy, (7

where ¢§ =1/R. The combination of the two terms is governed by a constant spontaneous curvature
1/R,=p/R where the ratio p = k® /(k® + k'*) may be called elastic fraction.
Inserting this result into our expression (6) we obtain the distribution

P(N) o N¢ e—consth, (8)
where
Qa—a)p*—2ap+ (a+a/2)=To*—6p+%. 9)

*1 The value for a agrees with that of ref. [4] (who gave no result for a) but this agreement is fortuitous since the authors use an
unphysical measure in the functional integral. Ref. [5] has the correct measure. For details see ref. [6].

#2 For a more detailed discussion of the measure and the T dependence of the gaussian curvature term, see ref. [7].

*3 For details on this source of curvature energy, see ref. [8].

58



Volume 116, number 2 PHYSICS LETTERS A 26 May 1986

cules than the outside layer. The elastic part ¢&'of the constant
of spontaneous curvature is equal to the actual curvature. Only
the directional part of ¢§' tries to restore the planar state.

@ Fig. 1. A bilayer vesicle. The inside layer contains less mole-

The experimental data of Holzwarth and Groll [2] show, among 1478 DPPC vesicles, a maximum in the
radial distribution dP/dR o R?**1 ¢~™XR* 3t R = 35 nm while the radius R, at which the number
has dropped to half the maximum is Ry, =50 nm. From the ratio r=R,/R,, = 1.43 we calculate
f=rexp(—r*)=0.515 and a= — }{1 +log (2)/[log (f)+ 1/2]} = 1.6. The determination is not very
precise. We could easily have extracted R, /R, = 1.513 or 1.393 which would have given a=1 or a =2.
Thus, on the basis of the present data, the ratio p cannot yet be determined and is comparable with purely
liquid crystalline bending (p =0, a=4/3).

Let us now turn to the calculation of the renormalization equations (3), which is quite straightforward.
We consider fluctuations of the surface x“(¢') along its normal unit vector N¢

x(¢) > x4 (&) +r(¢)N(¢) (a=1,2,3;i=1,2), (10)
~and find that the metric g, (§') = D,x“D,x“ changes as follows
8~ 8;—2vC,;+ DDy + VZC,»,C_‘/, (11)
where
C;=N°D,Dix“=C,; (12)

is the curvature matrix whose trace C = C/=g"C,; and determinant K = det(C/) = }(C>— C/C/) are
equal to c¢; + ¢, and c¢yc,, respectively. From (11), we find the well-known result [8] that the surface
element changes as follows

Vg — Vg1 - Cr+ 3(Dv)’ + Kv? + O(»*)] (13)
and calculate the variations **
Ne—[1-3(Dv)’| N*~DvDx"+ ...,
D’x—[C+ D%+ CYC,» + C'DpDyy — CDvDy
+2C"vD,Dyy + v’C/CFCL + (D*C)»Dy»| N* — CDyDx" + .. (14)
When multiplied together, this gives *°
C— C+D*+ CUCw— 1C(Dv)* + CUDyDy + 2CwD,Dp + v*C/CFC) + D*CyD,w + O(»?).
(15)

#4 Notice that in each of the equations (12), the coefficient of the tangential vectors Dx® need to be known only to first order in ».
#5 The linear piece of eq. (13) being well known, see eq. (43) of §101 in ref. [7].
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Combining (13)—(15) leads to
~2/g Ceg— —2y/g ¢y [C+ D?v + C,,C/» — C*v — CvD*» + C¥(DyDy + 20D, Dyp)
+(C/CkC] + CK = CC;,C)v? + D*CyDyw| + ..., (16)
V2 C? = g [C?+2C(D? + C,CVy — $C%) + »(D?)*y + 2CCY(DyDy + 20D, D,p)
—3C}(Dr)’ = 2(C? - C/¢/ )vD + (2CC/CHC + 4K? + C3K — C*)»? +2CD*CrD,o| + ...
(17)

In equilibrium, the linear terms do not contribute. The quadratic fluctuations can be rewritten, for large

momenta, as
D% \gv[D* +2CCYD,D,~ $CD* + 2C/GID? + 2¢,(CD? — CD,D,) ~ §e3D> + ... |v

~ fdzg VerD*[1+(3C? = 4K ) /D*+ (¢iC — 3¢3)/D* + ... ] . (18)
This produces an additional free energy
~ 1T Trlog D*+ %TD*Z(O)deg ‘/g\(écz — 4K + Ccy— 3c}). (19)
For a flat surface, we may calculate
B dm d%g 1 1
D7*0)= - L= =~ L= — 5= 108(dmun/Goun) (20)
9min (2'“) q w
For a sphere of radius r,, k* becomes /(/+ 1)/r? and
d? 21+1
f . ( 2) , (21)
(2m) ;  4mrg
such that D72(0) = —(1/2m) 10g(! e/ mir))-
The argument of the logarithm can be related to the total number of modes on the vesicle
(22)

M- ¥ - A,
! min
which, due to its microscopic bilipid nature, is proportional to N, the total number of lipid molecules [1].
Hence, we can write , for large N,
D™?(0)=—L~ —(1/4n) log N. , (23)
Consider now the term
3Tr log(D*) = Tr log(— D?). (24)

For a sphere of radius 7, it is given by

Y (21+1) log[l(1+1)/7E].
!
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This sum diverges and requires regularization. For this we consider the partition function

Z(B) =Y (21+1) exp[—1BI(I+ 1) /r}] (25)
/
and take
Tr log( - D?) = —[j%z(ﬂ). (26)

Being only interested in the short distance fluctuations, the sum may start with some /=/
divergences can be isolated by evaluating Z(8) via the Euler—-McLaurin formula

> 1. The

min

zm=f “a[i(1+ D] exp = 3811+ 1)/78] + 38 () = (Be/2)8 (Lin) = (Ba/ )" (Lnin).
where

g(1)=(21+1) exp[ - 3B1(1+ 1) /72],
and B, are the Bernoulli numbers. This gives

Z(B) = exp| = Bluin(luin + 1) /13| {28 /B + 5 = H[2 = (B/213) @2lrin + D]} + ... (27)

This is an expansion of the partition function in powers of 1/rZ, starting from a flat reference membrane.
This property is exhibited by rewriting Z(8) in a form in which the first term is the partition function of
random motion in a plane with a total area 4mr;

[>2]
2
—d4mr,

k exp(—1Bk?)[1+ B/6r¢ + o(B8?)].

K min (2'TT)2

Inserting this into eq. (26) and integrating over 8 gives

o d%k 1 > d% 1
Tr log(— D?) =4W02(fk ) log(k?) — B—rz-j; ) = +... . (28)
min T 0 min it

The first term is the quadratically divergent trace log of the flat reference membrane. This is absorbed into
the definition of the measure of the path integral.

The second term gives a further logarithmically divergent contribution — L(1/3r{) = — L(K/3) to the
energy density [7].

Adding all terms in eq. (19) together *¢ we find our result (3) with a =3, a= —4 + 3 a,=—1.
Inserted into (S) gives the distribution (6) with @ = 3 for a pure directional bending energy and the further
consequences discussed in the beginning of this note.

The author is grateful to Dr. S. Ami for a careful check of our calculations and for many useful
discussions. He also thanks Professors N. Kroll and J. Kuti for their kind hospitality at UCSD.

#$1f L= (1/87) log N, the renormalization of the mean curvature energies goes as follows: 1ko(C — cg)?

—3TL[aC?—2a(Ccy— 3¢3)] = 3(ko— TLa)C?— (kg— TLa,)Cey + (kg — TLay)cd = $k(C — ¢)? — ke + trceg
=1k(C = ;) — Ykey(es — o) leading directly to the first two terms in [4].
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