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We study the properties of topological excitations in the two-dimensional XY model by perform-
ing a loop expansion on the duality-transformed version of the model. The results for internal ener-
gy and heat capacity are in good agreement with recent Monte Carlo data.

I. INTRODUCTION

The XY model in two dimensions is a prototype model
for systems which exhibit continuous symmetry and topo-
logical excitations. An understanding of this model can
give valuable insights into a large number of related phys-
ical systems.

Topological excitations, unlike usual long-wavelength
excitations, have a threshold energy and are localized in
space. They play an essential role in phase transitions.
Because of this, they have recently attracted increasing at-
tention in many branches of physics such as low-
temperature physics (superfluidity),! solid-state physics
(melting),? and quantum field theory (quark confine-
ment).> Topological excitations appear as points, lines,
surfaces, etc., depending on the models and dimensionali-
ty. In the two-dimensional (2D) XY model they are points
which can be interpreted as vortices in a two-dimensional
superfluid film. In the 3D XY model the points become
lines (vortex lines). In a 4D XY model, they would be sur-
faces. In all cases, they interact with each other with
long-range Coulomb forces.

Such excitations acquire a special importance if a sys-
tem has a symmetry which cannot be broken globally.
Then it is only the topological excitations which can cause
phase transitions. The case of two-dimensional U(1) sym-
metry is the best-known example. Hohenberg* and Mer-
min and Wagner® have proven that the macroscopic order
parameter is zero at all temperatures, and in this sense the
system should be always in a disordered state. This is due
to the fact, that in two dimensions, fluctuations diverge as

2m)~? [ d%k k—%'*

and are therefore so large that the system cannot sustain a
finite order parameter on a macroscopic scale. Since the
work of Kosterlitz and Thouless,® however, we know that
this does not imply that there cannot be a phase transi-
tion. Vortex excitations can give a signal for an ordered
state by binding themselves in pairs in low temperature.
The phase transition takes place when tightly bound vor-
tex pairs dissociate at high temperature.

For gauge models, it is an entirely different mechanism
which forbids the global symmetry breakdown, as proved
by Elitzur.” Here again, the topological excitations can
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induce phase transitions. In all these cases the localized
excitations overcome the finite creation energy associated
with them by carrying large configurational entropy.

Important as it is, there is no accurate method for tak-
ing vortex contributions into account. This is due to the
fact that they are of an essentially nonperturbative nature.
They contribute terms of the type ¢ ~%/7 which cannot be
expanded in powers of temperature (in gauge models, T is
the coupling constant).

In the 2D XY model there exists an approximate way
out of this dilemma. It is based on approximate replace-
ment of the original model by a periodic Gaussian model
in the partition function, as proposed first by Villain.?
Then the vortices and long-wavelength excitations decou-
ple and it is possible to exhibit the effect of the vortices
with reasonable quality. Quantitatively, however, this re-
placement is a rather poor approximation, at least above
the phase transition.’

Our approach is based upon a duality transforma-
tion®© of the X¥ model which gives a precise definition
of the topological excitations even in the high-temperature
phase when their density is rather large. We split the par-
tition function into two factors, one arising from the
long-wavelength excitations, to be called spin waves, and
another from the vortices. For the spin waves we find
well-known perturbative methods to be useful.!! For vor-
tices we expand the fields around the classical values and
take into account fluctuations up to two-loop corrections.
Our results indicate that a perturbative approach pro-
posed earlier by Savit!? cannot be pursued in practice, due
to the absence of a small parameter. The temperature
(T—0) is not really his organizing parameter as he
claims. In fact, we shall see that the reason lies in the fact
that vortices modify the spin-wave spectrum beyond per-
turbative corrections.

As a test of our approach we have calculated the energy
and heat capacity and compared them with existing
Monte Carlo data.’>!* We find good agreement.

II. MEAN-FIELD THEORY

One way of dealing with spin-wave excitations is to per-
form a mean-field approximation and calculate small
fluctuations around it. The partition function of the 2D
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XY model reads (B=T"1) V,0(x)=0(x+i)—6(x) ,

which measures relative orientation of nearest-neighbor
spins, and i is the unit vector along each of the two coor-
dinate axes. '

The model is transformed to a more convenient form
by inserting!*

Z= IXI fjﬂd@(x)—z—ir—expﬁ% cosV;0(x) , (2_1‘)

where 0(x) is the angle of the unit spin, V; is defined by

1
f—m 2mi f—tco 2mi f—

u! f du’exp 3, a®(u®—U=[] f du®s(u®—U"%=1
- "a=1 a=1""°%
for each component U(x)=e®® in (2.1). In this way the partition function (2.1) is expressed as a path integral over two
pairs of nonconstrained, real and pure imaginary variables,

(2.2)

leo l 2 @ [ ‘
z=1I f dgw(f) I diw(l.‘) [0 au' [7 dumexp )y (W (a(x)al(x)— ol (x)u (x)+ax)u 2] |

where I(z) is the modiﬁed Bessel function,®

L= [ do5— eﬂws"
au are complex ﬁelds, a=al+ia?, aTmal—za and

u=u'+iu? u'=u'—iu? and
W (o) =lnlo{[(a'P+(@®P1"%} .
The exponent is minimal for the constant real niman fields

u(x)=u and a(x)=aqa,
|

+g2[u(X+i)uT(x)+uT(x+i)u(x)] , (2.3)
x,i

u =Il(a)/Io(a) N
a=2bu ,

with b =D (D: dimensionality) and I,(«a), the modified
Bessel function of order one. The free energy per 1att1ce
site is given by

—BfMF=bu?—au-+Inlyla) .

(2.4)

(2.5)

For the one-loop correction we expand the exponent in
(2.3) up to quadratic terms and find

—BNfMF 4 % S (W [[8a(x) P+ [6af(x)1%} + 2Waa18a(x)8aT(x) — 8at(x)bu(x) —da(x)8u T(x))

where
Vif(x)=f(x)—f(x—i),
W o= — I (0) I P+ FI5 () /o) — 5
W i=—%[1(a) /o) P+ T-

Performing the Gaussian integrals, we obtain the one-loop
correction,

tiop_ L 7 401
—ptor=—i [ G
m? m? K_-_
X\ o5+ 1=%p |20

1
_._7[,

2.7

where m is a mass parameter for the size fluctuations of
the field and is given by

\AZ
+BD28uT(x) 1+2—23— du(x), (2.6)
F 2
—23—2 2b(1-— ),
T 1 ot
= dk n(K-K),
f_ﬂ 20 n(K-K)

— D
K-K=2 Y (1—cosk;) .
i=1
For D =2, [=1.16.
The internal energy is calculated from (2.7) and (2.5),

2—1

%k (w2 [ m? kK]
1= mp |25 "0 | 2D
3 | m?
X3 |2D ]

(2.8)

The integral can be expressed by means of the number of
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817 ¢,, ie, Co=1,

m?
ot

2.9)

closed random walks of length n,
C2 =2D, C4=6D(2D -_ 1),

1 m? =l F:)
v D7 || Y

U
D=V

Expanding u in powers of a, we have
1 1 1

46 32p%  1286°

5 17
+ .o
* 3257 12863 ] ’

+o--’

and

dm? 1 . 3
ob 2D 4p%  8b3

The internal energy is now given by

U 33 18 4
D= l+2+8+ +2D8+0(t).

In Figs. 1 and 2 we have plotted the internal energy and
the heat capacity for the full result based on Egs. (2.7) and
(2.5), and compared them with Monte Carlo data.'*!?
While the internal energy shows satisfactory agreement
with the data, the specific heat displays a rather large

R
+ MC heat®
o o MC cool.®
Al o MC™2
9]
- ~
A High T
%,
-1'2L Y\.‘ -
SwWY *
oA SW+Vortices
13- MF i\ -
N\V4
14l MF+lloop ™ R
\,\\
SN
-15 2 - ] S
s a9 10 11 1.2
B

FIG. 1. Internal energy U= —d(—Bf)/98 for 2D XY model
within various approximations are shown: MF, the mean field
approximation from Eq. (2.5); MF + 1 loop from Eq. (2.8), SW
the Hartree-Fock approximation to the spin-wave contribution,
Eq. (4.23), and SW + vortices from Eqs. (4.32) and (5.22). MC,
the Monte Carlo data have been taken from Refs. 12 and 13 and
high T, the high-temperature expansion up to 8'2 from Ref. 19.

S. AMI AND H. KLEINERT 33

2.10)

T T T T T T LN B
o MC heat®
15f + MC cool.® 1
C
High T
1k . SW+\Vortices 4
Q5r
0 1 2

FIG. 2. Specific heat C=—8%U /38 obtained in a way
similar to that in Fig. 1.

discrepancy. This is due to the neglect of vortex excita-
tions. If we want to calculate their effects, mean-field
methods are not very useful. In terms of the fields u,x a
vortex is a complicated solution of the nonlinear field
equations, which is practically impossible to solve. Thus
we have to develop a better procedure which exhibits vor-
tices in a more direct fashion.

III. DUALITY TRANSFORMATION

In order to separate the spin contribution clearly from
the vortex contribution, we apply the duality transforma-
tion.®1° It amounts to rewriting the partition function in
terms of variables conjugate to each pair of adjacent spins.
In the superfluid film interpretation of the model, these
variables correspond to the superfluid current density.
Substituting the Fourier expansion

o Beosd__ i

b=—e

in (2.1), we find

eI, (B)

L 1
Z= ];[ f_ﬂdB(X)2——bﬂ(x§_°° Iy, x(B)
Xexpi ¥, b;(x)V;6(x)
xi
- g b,<x)§_,° 83,78, 00lb @B G-D
where the Fourier coefficient I,,(),
T 1 :
- 1 peoso+ive
L= [ _ 05 P, (3.2)

is the modified Bessel function of order b (Ref. 15) for an
integer b. The divergence free condition in (3.1) can be
satisfied by an integer field a(x) via b;(x)=¢€;V;a(x),
where €; is an antisymmetric tensor in two dimensions,
€;3=—6€1=1, €;;=€,,=0. Using Poisson’s formula

2 gla)= E f dA g(A)e? 4

a=—c I=-—a

we transform the integer field @ (x) into a continuous one
A(x)in (3.1):



33 VORTEX CONTRIBUTION TO THE SPECIFIC HEAT INTHE . .. 4695

z=TI[ 4= 3 ew [2_lnIb,.(x>(B>+21'r'i'zz'(xmx)]
x X, i ; x

I(x)=—c
LI [ dax) 3 e [2 W(b;(x))+2mi 3, 1(x)4 (x>] : (3.3)
x 7 Hx)=—0 x,i x
|
with Zew=I"B) I [ dA(x)e=SI41,
b[(X)=€ij-V-jA(X) » X ®
(3.4) . . . .

W(b)=1n(Iy(B)/Io(B)) . | This expression allows for a simple low-temperature limit.

For 8>>1, only the first term in the field energy survives
From the structure of Eq. (3.4) we may interpret b;(X) 88 and the integral over A can immediately be performed
magnetic fields and 4 (x) as “vector potential” (Whichisa  gjving
scalar in two dimensions, in spite of its name). It is well

known that the superfluid current in “He has such a . 12 B
vector-potential representation with a local coupling 4-/ Zew=I,(B)PY W det~1%(—-V-V). (4.4
to vortices. In the absence of vortices the system is \

described only by spin waves. Their partition function is  The higher-order terms can in principle be calculated or-
given by der by order in perturbation theory.

© There is, however, a more convenient procedure based

Zsw= I;I f _wdA(X)exl)glnIbi(‘)(B) : —. on the original formulation of the partition function in

’ terms of the angular variables 6(x). For this we

remember that the asymptotic expansion of I(B), Eq.

(4.1), can be obtained, in principle, directly from an
The vortex part then may be defined by ; evaluation of the integral

=1, IT [ dd@exp IWBi(x) .. (35

Zwon=Z/Zsw » S X L@=[" dh  poosh +ihb 4.5

—w 297

via a saddle-point approximatidn around the maximum at
Z=Z,nlsw -  theorigin h =0. Equivalently, we may write

4 6
e

so that

IV. SPIN WAVES ‘ ePosh— e Pexp

B,
—=h

Sh+B

The spin-wave (SW) contribution may be evaluated via ) o o
an expansion of the Bessel Function!® in a power series in ~ With a truncated series for cosh, and evaluate this integral

1/8 order by order in perturbation theory, with Bh 2/2 being
? the free part and the bracket the interaction. In order to
e (2b)*—1 S shorten the notation, let us denote the truncated (subscript
I(B)=~ VorT 1— 88 © ! 7 ET== - ) expression (4.6) by exp(Bcos;h). Then we rewrite Zgy
‘ as
' [(2b)>—1][(26Y°—91 ... 41 e w dhi(x)
2(88) L R Zow=T1J_ a4l [ ==
. X X,
In this way one arrives at a field energy
Xexp B cos,h;(x)
S[A]l=— 3, W(b;(x))= 2 - : . ’ % t
x,{ .
W(2)(o) W(4)(O) 4 o 4-i bi(X)hi(X) ]
- 2 ——2!—17,-2(x)+Tb,- (x)+ ) %
' o dhy(x)
(42) o H e —21—:—‘ II [278 [2 eijvjhi(X) ] ]
where W2(0) and W*(0) are given by o x,i x ij
1 1 13 7 ' ) X exp [BEcos,h,(x)] . @D
(2) ~—— —_— — —_— M A ) .
W(0)~ B ‘1+ 2/3+ 245 + 85 + o ] R
S (4':2 _ Introducing
3 =
W<4>(0)gé; ‘H‘E e ] , i (x)=V,0(x)+€;V;7(x) , (4.8)

we change the two variables Ak, into 0 and y. Then,
and a partition function ‘ (4.8) after y integration becomes
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de(x)

(4.9)

Zsw= H f —="exp [32 cos, V;6( x)}

The difference with the original model is the tacit under
standing that expfBcos, - - - has to be treated perturbative-
ly, as defined by (4.6), around the maximum V;6(x)=0
only. It is this restriction which makes Zgy free of vor-
tices.

For a partition function like this there exists an effi-
cient way of summing the perturbative series via normal
I

—(1/2){(v,0%)
B3e N

x,i

»such that the partition function in (4.9) takes the form

NDBR(1+(1/2)(V,0)%)) © d6
Zgy=e ! H f 2:7. x)

with the renormalized inverse temperature
—(1/2){(v,6)%)

BR=PBe (i=1,2). (4.12)

Since
1 ,

((Vi9)2)==DBR (i=1,2),
(4.12) becomes

BR=Be—(1/ZDﬁR) R (413)

- the Hartree-Fock self-consistent equation.
For small B, (4.13) can be solved by iteration,
Rgp L 1 1 .
Vb~ % Tt
4.14)

2

with b =DB, b®=DpX. The result is tabulated in Table
I. There exists a solution only for b>(e/2)~1.359,

R T
tR=;§-gt+——+-§-t3+%t4+--- ,

TABLE 1. Self-consistent inverse temperature SR in Eq.
(4.13) as a function of inverse temperature B is tabulated

(D=2).

B Br
0.7 0.3222
0.8 0.4700
0.9 0.5885
1.0 0.6995
1.1 0.8069
1.2 0.9124
1.3 1.0166
1.4 1.1199
1.5 C 12226
1.6 1.3249
17 1.4268
1.8 1.5284
1.9 1.6298
2.0 1.7310

BR z(v 02+BR Y 2
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ordering.!! The basis for this is Wick’s rule for harmoni-
cally fluctuating fields
oMo —WUEN iM, (4.10)

where { - -+ ) denotes the harmonic average and the dots
denote the normal ordering. Applying this to

B> cos,V,6(x),
X,

we obtain

5(V:0P%+:[cosV,0—1++(V;004]:4+-14+5{(V;0)?)} ,

(v 0)™:

(2 )! (4.11)

X n=2

—
which for D=2 and D=3 comprises the entire low-
temperature phase [D=2: =(2/0.89)=2.247,
t.==(0.89/2)=0.445; D =3: b,=(3/2.2)=1.36,
t,=0.733]. For larger D, Hartree-Fock equations cannot
be used up to the critical point which for D— o con-
verges to the mean-field values b,—2, #,— 7. Only the
expansion (4.14) can, if they are truncated after the maxi-
mal reliable power in t. Neglecting the interactions, the

‘integrals in (4.11) can be performed and we obtain from

the lowest Hartree-Fock approximation

1" vv |
HF __, NbR[1+(1/2b%)] _ .
st = + (4,"-bR)l/2 det | — 2D »
(4.15)
which amounts to the free-energy density
—Bf S =b"+ 1 —TIn(md")— 11
1 1 1 1
P b —=1,
b+8b+24b2+ sIn(4mb)— 51
(4.16)
with
‘ ' 1 KK K
I— dPk—— 51n 4.17)
f“’—‘ “@mP | 2D ]

being equal to —0.22004 and —O0.11837 for D =2,3,
respectively. Using

ab® _ [, 1 |7 —amm_BR [, 1
ab | 2pk b 2k |
(4.18)
the internal energy per site and dimension
U 1 d
2="D aB( —Bf)l=— ab(—-ﬁf) (4.19)

. is found to be simply
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_@_:_e—unbk):_ﬂ o
D b '
11 1
2_1 — —— + PP .-
26 Tep? T 1260

PP S S (4.20)
2 8 12

This energy is reliable only up to the power 12 If we
want to go beyond this power, the interaction energy has
to be considered. The lowest Feynman diagram due to the
second order in the quartic interaction which gives a free
energy of order #2

_BfY= —Z?.IT @

1 | B® ’
2

4.3

x,x,5,j

4

V,-V"—l- 421

J BR
where v(x—x') is the Coulomb propagator (Appendix B),

_1
AN

v(x—;’)

_1 8
= 41

(ix—X')=— l

The dominant part of this comes from the D x=0 diago-_
nal pieces,

> _(v,.e(x)vje(x>>4=(—b]—)RF, 422)
x=0,i =] .
and reads
@_1 1 1 o
—Bf =D 241 GRE : e (4.23L

The x40 and the off-diagonal i=4j contributions are ex-
tremely small. In order to calculate them let us now go to
the special case of D ==2 dimensions. Then the i=j,
x=1+1, +2 terms are '

(V,6(1)V,6(0)) =;2R—[v(2,0)—20(1,0)+v(0,0)]

0.2732
b R

2

T

2( —"1;_) ] = y =
) (4.24)
{(V,6(2)V,6(0)) = ——b—,;-[v(—1,1)—2u(0,1)+u(1,1)]

2| 1 sy L
02732
==% -
such that the sum in (4.21) is changed from 2/(b%)* to
‘2 8 ran A 2 .
—+ (0.2732)*= (14-0.022), (4.25)
bR R (bR)*

i.e., by only 2%. For x =*21, the contribution is entirely
negligible since :

4697
_ (T10QDV0(0)) =~ [0(3,0~20(2,0)+0(1,0)]
__ 2|1, 4.2
bR PR 2[ 1+1r
1
e
_0.0930
el #.26)

such that the fourth power 2/(b®)* changes only by

1/100%.
Consider now the i=4j terms. The expression

(V,0(x)V,000)) = ;—R[u(x)—v(x+1)+u(x+ 1-2)

—v(x-—2)] 4.27)

sums up the potentials around the plaquette (with alter-

nating signs) lying to the lower right of the point x. The

- — largest contribution for the sum in (4.21) comes from the

four plaquettes around the origin, each of which gives

- sz[v(o>——v(1,0>+v(1,—1)—v<o,_1)]

-2 1 1
== (—2|—-= -
bR 4 + T
_ U 1 2 | 0.3633
. - bR - T - bR > (4.28)

such that (4.25) is modified to

2 1
~—=—(140.032) 44— X0.0574
bR + )4 bR X

=(—2ﬂ(1+0.057) (4.29)

bk) E
If the plaquette lies farther away from the origin, it can be
= neglected. For example,

<v19<1)vze(o»=b%[u(1,0)—u(2,o>+v(z,_1)

—v(1,—1)]
2 1 2
1 2 1
+ I R ]
__0.0901
——‘_bR ’ (4.30)

such that 2/(bR)* is modified by less than w55 %. Hence,
for D =2 we can make (4.23) more precise and have

_ﬁf(Z)_..l_ _1_ _l___l 057 .

=3 7@ G 431)
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TABLE II. The internal energies and heat capacities obtained by various approximations and in a
manner similar to that in Figs. 1 and 2, at chosen inverse temperatures, are tabulated.

U C
B SwW Vortices SW + Vortices SwW Vortices SW 4 Vortices
0.95 —1.3355 6.88 102 —1.27 0.925 0.38 1.31
1.0 —1.3824 5061072, . —133 0.861 0.32 1.18
1.1 —1.4566 2.71x10~? —1.43 0.777 0.21 0.98
1.2 —1.5135 1.43x 102 —1.55 0.726 0.13 0.85
1.5 —1.6272 2.02x1073 —1.63 0.645 0.03 0.67

2.0 —1.7300 6.34X 10-3 —173 0592  0.001 . 0.59

Since the term —Bf? is quite small compared to the UEE  pR 1 1 1 -1

leading powers in ¢ up to the transition point 5% ~2, we D b [— + 24D (bR | 2bR ]

may forget the 4.5% modifications due to the x40 and

iz parts of (4.21) and use (4.23) directly. A similar dis- PR T 1 .

cussion holds for three dimensions. =—1+ 2 +3 1 Tt +0(t%) . (4.33)

Thus we arrive at a free energy, good to order 3
This expansion is to be compared with the mean-field re-

_peHF_pr 11 1 Ry_ L sult (2.10). They agree up to t%. Even the terms of order
Bfsw=b"+>+ 48D (bR ? n(4rb5) =31, 1> would not differ greatly. ;
(4.32) In Table II we have listed the results and Figs. 1 and 2
, , compared the internal ener%ies and heat capacities with
with an internal energy existing Monte Carlo data'®'3 in D =2 dimensions.

V. VORTICES

The vortex contribution is given by (3.6),
Zen=I1[" dax) 3 exp {2 W(b;(x)+2mi 3, 1(x)A(x) ]
x —® X, x

~1

[ damexp I Wbx)| , 6D

' I(»x)=--no
where
W(b)=In[I,(B)/Is(B)]=Wo(b)+ Wiy (b)
Wolb)=5W"(0)b2, Wilb)=W(b)—W,(b) (5.2)

W"(d)= — f:,deﬁeﬂmeez/lo(ﬁ) .

Although it is hard to evaluate this formula in general, it becomes quite simple at low temperatures since, there, only
1=0,*1 contribute, corresponding to a dilute gas of oppositely charged pairs (4 — ).6 In this circumstance /(x) may be
regarded as an external field for A(x). The strategy is then to imagine a certain configuration of /(x) and later sum over
all important patterns,

Zvort=1+II z Z[I(x)]

x I(x)%0

Z[I®]=T1 [ dA(xexp [ Wi +2m S 114 (H I dd e 3 Wb ) )—‘ . (5.3)
x X, x x x
The previous approaches® 1 take advantage of the limiting form of W (b;) for large 8 (4.3),
W(b,(x))z—al—gbf(xw —‘;?b;‘m—owf/ﬂﬁ : (5.4)
If only the first term is kept, it is easy to perform A(x) integration. To the quadratic term this gives
Zy[l(x)]=exp _.(4472/2)/35I(x)u(x—x'b)l(x’) =exp —(W/Z)Bgl(x)v’(x—x’)l(x') %l(x)=0
— ¢ I (5.5)

3 ix)=0"’
X




where Ep[l(x)] is the energy for the configuration [I(x)]

2
Epl101=ZL S 1w x—xi(x)

> (5.6)

and v(x) and v'(x) are Coulomb Green’s functions in 2D,
the latter being the divergence-subtracted Green’s func-
tion. Some of the properties of the Coulomb propagator
are summarized in Appendix A, for convenience. The
condition in (5.5) originates from the divergence of
v(0)~InR (R: the system size) at the origin. The vortex
configurations which do not satisfy the neutrality condi-
tion ¥, /(x)=0 give no contribution.

It is well known!” that v'(x) is well approximated by
the asymptotic value (A4} at all x (x540)

p(x)~ — (I | x| +1.617) .
2

Since this is the potential for which Kosterlitz and Thou-

less® have predicted the vortex unbinding transition, we

expect the vortices to be bound in pairs and form a dilute

gas at low temperatures. The contribution from the vor-

tices is then simply given by

—BEy[m
—vaort=zp(m)e viml s
m
where the sum is to be taken over various types of vortex
pairs m and p(m), the corresponding orientational factor.

The pair energies Ep(m) can be explicitly obtained with
help from Appendix B,

(729.87, p=4, form=—+

-+ =
47~12.57, p=4, form=_ =
47 [1—--3_— ~14.35, p=4, form=¥—-+ (5.8)
Ep= :
2 1 . T +
47 | = —=- |~15.26, p=8, form= .
T 4 -
-+
167 .

—-3—z16.76 , p=4, form= -

where dots among vortices indicate empty sites. Al-
though this calculation is useful in understanding the
model qualitatively, the results (5.8) and (5.7) do not ac-
count for the Monte Carlo data.'>!® Indeed, the vortex
pair energies (5.8) are so large that for f>1 their contri-
bution is always negligible. The large error occurs when
ignoring in (5.4) the higher-order terms in b;. At first
sight one may be tempted to improve the accuracy by tak-
ing the higher orders in b into account perturbatively.
Unfortunately, this does not work. The reason is that all

terms in the expansion (5.4) contribute to equal order in
!
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1/B. This is easy to see since b; ~O(B) in (5.3), such that,
indeed, every term in (5.4) becomes of the same order S.
Therefore, the perturbative approach breaks down.

This may be contrasted with the spin-wave part. There,
the typical value of b; is O(V/B), such that the higher

. terms decrease as B!~ (2n is the power of b;) and assures

the validity of the perturbative approach.

In the following we will avoid this difficulty by apply-
ing the loop expansion'®'® to the full expression in (5.3).
The loop expansion is the field-theoretic version of the
saddle-point approximation for simple integrals and has
been used successfully in many systems where fluctuations
are weak. In general, we can write (5.3) as

Z[I(x)]=e PRI, (5.9)

where BE[I(x)] is the sum of connected graphs organized
by a number of loops n,

BE[I(x)]=8 3, E,[l(x)] . (5.10)
n=0

The lowest term, which is called the classical or tree term,

is simply given by the field 4°(x) for which the exponen-

tial in the numerator of (5.3) is stationary,

—BEo[l(x)]= 3, W(bf(x))+2mi 3, I(x)4%(x) .

X0 x

(5.11)

The classical field is determined by the stationarity condi-
tion, :

— 3 &V, W'(bi(x)) +2mil(x)=0 , (5.12)
i

which is the analog of the Maxwell equation, albeit non-

-linear, for the magnetic field b;, with an imaginary

current il. For convenience we introduce the notation

agy= 3 €;Q; -
i

Then, a(;y=a; and a(yy= —a;. If we use (5.2) and (3.4),

we can solve (5.12) formally:
ANx)=—2xi[ W"(0)]! > v(x—x)[l(x")—q(x")],

b (x)=—2mi[W"(0)]~! 3V ;0" (x—x') (5.13)
X [U(x")—q(x"],
with
1 ¢ rrc
g(x)=5 2 ViyWim(bf(x)) . (5.14)

The nonlinearity of Eq. (5.12) is entirely hidden in g(x).
The bare charge I(x) is screened by this g(x). Substitut-
ing (5.13) in (5.11), we have

—BEy[1(x)]=2m)[W"(0)] '+ (= (x~x)(x)—q(x)"(x~x)g(x)]+ 3 Wi (bf(x))

x,x'

x,i

=2 [W"(0)] 711 3 U (x—xN(x')—2r) [ W"(0)]~ 1+ > g(xW'(x—x")g(x’)

x,x’

. (BE}
+5 Wi (b7(x)) Six=o”
X

XX

(5.15)
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Making use of the large-3 expansion

1" -1, __ X
[P0 '~—F|1+7 +2432 8'3,3+ ]
we see from (5.15), (5.10), (5.9), and (5.3) that the first
term in (5.15) corresponds to the usual result (5.5) and
could have been obtained by previous methods leading to
Eq. (5.5) if a power expansmn in b; rather than in B“
had been used for W(b;), i.e., W(b;)~5W"(0)b}+

l

 Z[I(x)]=e ~PEN [H fdsa(xlexp

—+ 3 84(x)g
x,x’

X ‘HfdA(x)exp [ T zA

where

g;,l = ——EV(,v)a);(X)V(i)Sx,x' »
i

Ve =‘"2Vivi5x,x' ’
i

w;(x)=W"(bf(x))/W"(0),
AMx)= Wb x)) /[ — W] 2,

oln)__+9 (n)
AT =Ry (X)lbf’(x)=o’

6b,(x)=—V—(,)5A(X) ’
bi(x)=V(;)A(x) .

The higher corrections represent the difference of spin
waves, expressed here by A fields, with and without vor-
tices. The spin waves oscillate around a new minimum
A%(x) when the vortices are present, while they are ordi-
nary spin waves when the vortices are absent.

Expanding the interaction terms and organizing the re-
sults according to the number of loops, we obtain for the
one-loop correction in (5.10) and (5.9)

—BEI[I(x)]———tr lnu\/::/‘ —In (::l )b“l=0}

(5.17)

where the broken line indicates the free propagator g or v
in (5.16) and tr and the dot product are to be taken over x
space. Separating out the interaction term from o;(x), we

~pEI1=1 [ CO- OO

=+ > [Gulx,x)AM ()G (x,x) — +A°4)]

=—Jtrin(g='w),

4+ 3 S —’-l—)»(")(x)Sb,"(x)

W dx)+ S

X1 n=4,68,... 1
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Because of induced vortex charge g(x) and the full in-
teractions we have found two extra terms in (5.15). Note
that an arbitrary constant which could be added to 4°(x)
(5.13) does not contribute to E because of the neutrality
3 H(x)=0in (5.15).

We can find higher-loop corrections by expandmg the
exponent in the numerator of (5.3) around b; =b(x) and
the exponent in the denominator around b; =0. Changing
variables, we see

—1

> (5.16)

xi n=3

E L‘k"(")b{'(x) }

I
may rewrite (5.17),

—BE|[I(x)]=—7F trin

1= 3 Vo™V ]
i

1 . .
z—TTI‘(GO' mt,Go.wmt

i 1
o™ —3G%w
. . . .
+36%0"™-G%0"™ G %™+ - - - )

=—4 Trin(1+G%o™), (5.18)

where we have introduced a free propagator G° for b,,
and the interaction

G;‘}(x,x’)= ~VyV'(x—x'),

o™(x) =W (b (x)/W"(0),

for which w;(x)=1+w!™(x). Here, Tr and the dot prod-
uct are to be taken in (x,i) space, and should be interpret-
ed as such from now on. To calculate the two-loop con-

tribution, it is convenient to introduce a free propagator
for &b,

(5.19)

Denoting G by a solid line, we give the two-loop graphs to
—BE

Gy(x,x)=V(\V {(})8x,x

o] +1 O-OF % &

x,i
T 2 Gii(x;x)}"Sx)(X)Gij(X,X')A-_(;S)(X')ij(x',xl)+le‘ S APEG,xx AP (x) , (5.20)
x,x,5j x,x,5]
where we have made use of the fact that Glb,“‘=o=Go G =(14G%w™)~1.GO

and GJ(x,x')=7% for i =1,2.
Expanding g in powers of o™
that

n (5.19), we can show

and thus G obeys the Dyson equation,

G=G°—G%w™ G . (5.21)



So far, we have assumed an arbitrary configuration of
1(x), so that the loop expansions (5.20), (5.18), and (5.15)
are completely general. We have seen in (5.8) that at low
temperatures vortices are bound in pairs and characterized
by its dipole moment. We expect this situation holds true
even in our new results so that we can specialize the for-
mula to the dilute gas of dipoles. The result is then the
same as before [Eq. (5.8)] but with BE[m] now given by
(5.20), (5.18), (5.15), and (5.10). L
Adding to the dipoles listed in (5.8) a quadrupole

+ we obtain

—Bf"t=3 p(m)e —BElm] | p(Q)e —FPELC]

(5.22)

+ — . R e e . _—
with Q= " and p(Q)=2. Higher quadrupllresli‘kieﬁr
T — + - - Ce =
_ 4 . oor \ o
— + .

are so strongly suppressed that we can ignore them, al-
though the latter happens to appear in Fig. 7(b) of Ref.
12, due to fluctuations. Their naive pair energies Ey [to
be compared with (5.8)] are :

+ - - : o
Ey [_ 4+ . =(27)? l—’:_; 218.82} (p=16)
and
+ - | B
219 16
: = = =21 =16) .
Ey N @m* | 3w] 21.81 (p=16)

The tatal free energy is then the sum of (5.22) and (4.32).
Because of the nonlinearity in the extremum condition
(5.13), in general we cannot obtain explicitly the energy E
in (5.22). Fortunately, there is a small parameter in this
problem which we have found after a numerical calcula-
tion. It is the screening charge g defined in Eq. (5.14).
Actually, the smallness of g permits also a more direct ex-
pansion in powers of g which we have not followed here.
This procedure is explained in Appendix B. We shall
make use of this smallness by following an iteration pro-
cedure which starts from ¢(x)=0 and converges rapidly.
To solve (5.13) we first assume each configuration of m in
(5.8) or Q in (5.22) and proceed by iterations, starting
from g(x)=0. We find that 7 X7 lattice points surround-
ing the assumed I(x)5:0 are sufficient to solve b(x).
Beyond this area, b®(x)=0, practically. In Fig: 3 we have
plotted b%,b%| ,_q, and g(x) on a lattice in the presence
of I(x)=840—054,1 at f=1 and 1.5. Note that bfi(x) is
pure imaginary so that Imb(x) is plotted. The magnetic
fields b are largest at the sites occupied by /(x) and de-
crease rapidly away fror the occupied sites. Although, in
the figure, b°(x) does not appear to form the dipole fields,
it does so in the remote regions. Comparing b%(x) and
b°U(x) | 4(x)=0» We find that g (x) gives rise to contributions
to b(x): at B=1, ~16% at x=1 and ~10% at x=0;
and at B=1.5, ~8% at x=0and 1. At f=2, the contri-
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Imbtx)  (B1) Imb(x) (B=1.5)
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- - / 3 » ——— \/ >
CooN \ / N /
N .
. . \ . . . \ .
(a)
qlx)  (B=1} qlx)  (B=15)
LI l : 1 zJ l
N

(b)

FIG. 3. (a) Classical values for the internal magnetic fields
Imb%(x) (large arrows), Imb°Ax) | )0 (small arrows), and (b)
nonlinear vortex charge g(x) (small arrow) in Eq. (5.14), in the
presence of the dipole pair (+ —): I(x)=8,p—8; (large arrow)
at B=1 and 1.5 are displayed on a lattice. For g(x) diagrams,
up and down arrows denote positive and negative values, respec-
tively. Note, b%(x),b%(x) | 4x)—0 are purely imaginary at these
temperatures.

bution is unimportant. The fields increase as the tempera-
ture rises. This is expected since the free fields
| b%(x) | g=0 grow linearly in B for large B [Eq. (5.13)].
The nonlinear charges g(x) which are visible only at the
occupied sites screen the bare charges I(x): at B=1,
q(0)=—g(1)=0.227 which amounts to ~30% of screen-
ing, and at B=1.5, ¢(0)=—g(1)=-—0.0928 which

1
5 L

FIG. 4. Loop expansion of bound vortex energies, the zero-
loop E, [Eq. (5.15)], up to one-loop Ey, [Eq. (5.18)], and up to
two-loop Egy143 [Eq. (5.20)] as a function of inverse tempera-
ture S8 are plotted.
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amounts to ~ 10% of screening. At B=2, q(x) is almost
negligible.

Once b%(x) is determined, Eq. (5.15) gives the
classical-level energies E, which are plotted in Fig. 4.
The energies are 20—40 % less than the previous results of
Eq. (5.8) and enhance the vortex contributions to heat
capacity and internal energy. Of the three terms in Eq.
(5.15), the second (g term) and the last term contribute
~3% and ~8% of E, for the (+ —) pair at f=1.2,
respectively. The numbers at f=1.0 are ~4% and
~12%, and at B=1.6, ~1.5% and ~4%, respectively.
For other pairs the numbers are roughly halved. The last
two terms in Eq. (5.15) decrease for low temperatures and
are most important for (++ —) pairs. The one-loop correc-
tion E, (5.18) to E, was evaluated in series up to (o™)?
and was added to E, (Fig. 4). The correction is negative
for B<1.2~1.5 for our configurations. It gives E; a
7—9% decrease at f=1.0 and a 2—4% increase at
B=1.8. To find the two-loop correction E; in (5.20), we
needed the free propagator G in (5.19). This was obtained
iteratively from the Dyson equation (5.21). The sum of
the energies Eo.;,2=Eq+E;+E, is plotted in Fig. (4).
The correction E, is of ~0.5% at B=1.0 and increases
to a few percent at B=1.8. Our loop expansion is there-
fore a good approximation. It is important to evaluate
higher-loop effects in a situation like ours when there ex-
ists no obvious expansion parameter, 3 being about unity
in our case. It is known that the loop expansion works
whenever a large overall constant factor appears in the ex-
ponent which suppresses the fluctuation. The present sit-
uation is different. Here the results are better for lower .
When B decreases, the spin waves tend to have shorter
wave lengths and are naturally insensitive to a localized
object like vortices. Consequently, the higher-loop effects
should disappear as 8 decreases because they measure the
difference between spin waves with and without vortices
[Eq. (5.16)]. Table III shows our results for energies
Eg, 1,42 against B. In the last row the previous results,
Eq. (5.8), are inserted for comparison. For all configura-
tions the energies are greatly reduced. For the (+ —) pair
it is a ~30% reduction at B=1.0. This decrease is clear-
ly reflected in the internal energy and heat capacity in
Figs. 1 and 2 and in Table II. Here we have added the

spin-wave contribution in (4.32) to the vortex part and
used the  standard thermodynamic formula,
U=—3(—pBf)/3B and C=—F%3U /3B. We have a good
agreement with the Monte Carlo data.!>!?

V1. DISCUSSIONS AND CONCLUSION

We have presented a new method to take into account
topological excitations of nonlinear lattice models. As an
example, we have calculated the heat capacity and the
internal energy of the planar spin model in 2D and com-
pared them with the recent Monte Carlo data (Figs. 1 and
2).12:13 We have found good agreement. In particular, the
peak of the heat capacity is well reproduced at the correct
temperature. Our results indicate the importance of vor-
tices in this model which are missed by the mean-field
method described in Sec. II and the Hartree-Fock method
in Sec. IV. The latter methods, relying on perturbation
expansions in powers of T, focus attention only upon
spin-wave fluctuations and ignore the nonperturbative ef-
fects arising from vortices which behave like e ~£/7 and
cannot be expanded in powers of T.

In order to see the impact of the topological excitations,
it is important to look at the specific heat since the inter-
nal energy is not sufficiently sensitive [for it, the two con-
ventional methods suffice (Fig. 1 and Table II)]. In order
to extract clearly the vortex content of the model, we have
made use of the duality transformation.®!® Although this
transformation has been used before, it has been applied
mostly to the Villain model,® where it is trivial to per-
form. For the 2D XY model it has been analyzed, but im-
properly.’® As discussed in Sec. V, the presence of vor-
tices makes it impossible to expand the action for the dual
variables in powers of 1/B8. In other words, 8~! is no
longer a good expansion parameter. In fact, we have
shown that the terms supposed to be of higher order are
not really so but are all of the same order as the lowest
one.

In the present apProach we have, instead, resorted to
the loop expansions,'®!® regarding the vortices as external
fields to the dual variables. This has given rise to non-
linear equations [Eq. (5.12)]. At the classical level they
determine the internal magnetic fields in response to the

TABLE IIl. The bound vortex energies up to two-loop corrections Eoyi.;=E¢+E;+E; [Eqgs.
(5.20), (5.18), and (5.15)] for various types are tabulated for chosen temperatures and are compared with

the previous temperature-independent results Ey [Eq. (5.8)] in the last row.

= -t

B +— . +o—= - .

+ ) + 4 +—
0.95 6.952 7.669 8.802 9.264 10.156 9,162
1.0 6.862 7.624 8.765 9.244 10.150 9.041
1.1 6.719 7.571 8.732 9.246 10.183 8.852
1.2 6.616 7.559 8.744 9.294 10.265 8.721
1.5 6.471 7.699 8.963 9.624 10.708 8.596
1.8 6.484 8.016 9.354 10.125 11.321 8.763
2.0 6.547 8.289 9.666 10.510 11.772 8.988

9.87 12.57 15.26 16.76 14.35

14.35
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FIG. 5. Normalized importance of various bound vortices,
P(m)exp( —BE[m])/(—Bf") and  p(Qlexp(—BE(Q)]/

—BfY°t), as having appeared in Eq. (5.22), is plotted as a func-
txon of inverse temperature (3.

vortex currents. The equations resemble the Maxwell
equations, but with nonlinear field energy. They imply
the renormalization of the bare charge I(x) by the extra
charge g(x) which contains the nonlinearity screening ef-
fect (Fig. 3). For the vortex interactions (5.15), two new
terms, one associated with the nonlinear charge g (x) and
the other with the nonlinear field energy, have been ob-
tained in addition to a term which in the limit f— o0
reduces to the ordinary Biot-Savart-like term®! ~m'l
((5.6)]. Taking up to two-loop diagrams, we have deter-
mined the energies of various isolated neutral molecules of
vortices, dipoles, and a quadruple within a few percent er-
ror (Table III and Fig. 4). [Notice that our energy of the
-+ — configuration (6.5) does not qulte agree with the esti-
mate of Tobochnik and Chester'? extracted from the vor-

T
1D-XY model

100 %

o5t

Exact

B )
FIG. 6. Exact and Hartree-Fock results for the heat capacity

for the 1D XY model in Egs. (C5) and (C6) are plotted as a_

function of 8.

0 1 2 3 4’ s
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tex density at f=0.125 (which is 9.4+0.3). The reason is
probably the slow equilibration of vortex configurations in
‘Monte Carlo data.] This was achieved by solving first the
nonlinear Maxwell equations numerically. In Fig. 5 the
relative 1mportance of various bound vortices is shown. A
quadruple * 7 ‘detected by the Monte Carlo'? simulation is
seen to become as 1mportant as the dipoles as temperature
increases.

The energies are now greatly reduced from the previous

‘results (5.8) (Refs. 8 and 10) and are temperature depen-

dent. Since these energies determine almost exclusively
the free energy of the vortex part in the low-temperature
phase (5.22), the reduction immediately enhanced the con-
tributions from the vortices to the heat capacity and
brought good agreement with the Monte Carlo data. The
agreement extends even beyond the critical temperature

" (Fig. 2). Thus, our independent-molecule approximation

interpolates even the low- and hlgh-temperature phases

.. smoothly, at least for macroscoplc properties such as heat

capacity. This is no surprise because the 2D XY model
belongs to the Kosterlitz-Thouless® phase transition, so

that it undergoes a smoother than second-order phase

transition.

At this point we want to make a few critical comments
on the results. The good agreement for f<1 is mislead-
ing in our opinion. This does not necessanly mean that
our picture of noninteracting neutral molecules holds even
for B<1 when the system is full of vortices of bound and
free types. Rather, we speculate that the spin-wave con-
tribution is overestimated by the Hartree-Fock method, to
raise the specific heat and thus improve the better agree-
ment. This overestimate may be illustrated by the one-
dimensional (1D) XY model. It consists purely of spin
waves and its partition function is exactly known. For it,
the Hartree-Fock result is presented in Appendix C and is
compared with the exact results in Fig. 6. Although the
approximation is good for lower temperatures, the specific
heat begins to override the true curve as B—0. The exact
result tells us that the heat capacity which is given by
powers of 1/B for low temperatures is taken over by
powers of B for high temperatures. The deviation occurs
because the asymptotic series in 1/p is unable to take care

_ of this transformation.

Notice that the full expansion in 1/B is really the

~ asymptotic expansion, i.e., it is formally divergent if it is

considered up to the infinite order. The Hartree-Fock
method, however, gives rise to a finite result owing to the
partial resummation.

Actually, for B> 1, the Hartree-Fock full series for the
inverse temperature 3% in (4.13) is not really needed. For
B=1, for example, B is already determined by a few
lower-order terms in the power series expansion of
exp— 1/(2DBR) which correspond to the lowest, Feynman
diagrams in the perturbative expansion.
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APPENDIX A: COULOMB GREEN’S FUNCTION
v(x) AND v'(x)

The Coulomb Green’s function v(x) and v'(x) are given
by :
ik-x

e
Y= [V;V, }x, f“” (217)2 2 2 (1—cosk;)

i=1,2

o 1 e, &y
v'(x):l](x)—v(o)=f__ﬂ,d2k (277_)2 2 2 (I—COSki) ’
i=1,2

respectively. In the latter propagator v'(x), the logarith-
mic singularity of v(x) at the origin has been subtracted.
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For large | x|, v'(x) behaves as
v’(x)~—217[]n|xl +In(2v3e")] , (A4)

with y=0.577216.. ., Euler’s, constant.

_ APPENDIX B: SMALL-q EXPANSION OF EQ. (5.13)

In the limit ¢—0, we can solve the nonlinear equation
(5.13) by expanding the right-hand side of Eq. (5.14) in
q(x),

g === 3 Vi Wi |60+ S Vi(x—x)g(x')
2 7 .

1
The values of v'(x) are known.!” We list some of them: =om 2 V(i)Wmt(bioc‘(X))—qo(x) (B1)
x: (0,0),
where
v'(x): 0 i
3 - i v ’ ’ ’
x: (1,00, (1,1), = =0 y 2V E—xlx),
v(x): —7, —l/m,
‘ n(x)— Wn 0) V(i)D’(X)
x: (2,0), (2,1), (2,2), (
2 1 2 4 The magnetic fields b°'(x) are then given up to O(g) by
vix): 14—, =, = (A2) d Ocl a0 x’
T’ 4 T 3T bi(x)=b;"(x)+ 3, Vi(x—x")g(x") . (B2)
Note the properties of v'(x)=v"(x,x;), *
, , , Similarly, the classical contribution —BEj in Eq. (5.15) is
@ =v(xil, [ D=vUxl, 5. A3 panded upto Olg) °
—BE,[1(x)]~ P‘;f”( 1 zz(x)v'(x )+ S | WindbP(x)+ Wi (674x) S V,-(x——x’)qo(x’)] . (B3)
x,{ x’

For higher loops in Egs. (5.20) and (5.18) one may simply
assume b%(x)=b Ocl(x), since they are already small
corrections to — BE,.

APPENDIX C: HARTREE-FOCK

APPROXIMATION FOR 1D XY MODEL

The XY model in one dimension is given by
T 1 '
Z=1:[ f_’dG(x)E;exp [Bgcosve(x) . (C1)

Integrating the angles one by one and ignoring the
boundary effects, which is unimportant in the thermo-
dynamic limit, we find

N
[ I o - eﬂms =I(B)" . (€2)

Therefore, the model has no topological excitation and is
described entirely by angle fluctuations. Then, for low
temperatures the Hartree-Fock approximation may be
sufficient. Thus, we consider

cos, 6

Zsw=[" do5-¢", (€3)

with cos, 8 defined as in (4.6) and apply the normal order-
ing. This gives

f—wZ'rr

2
XexpﬁR[—%Gz-{—: {cose—l-{——ez—}:} , (C4

Zgw =exp [BR [1 + —ZF

with BR=pBexp(—+/BR). Taking up to three loops, we

find
_ 11 Ry, 1 1
stw —BR+2 7 In(27B%) + 24! (BR)4 ’
pHF _ _ L+____L__
swW 3! R\3 R ’
B B(B*) (2% — (C5)
o J— e BR |
Yo 2BR—1 | 38R (2BR—1(BR)?
2
* 3BR(2pR—1)3 °
The exact results are
—Bf =Inly(B),
U=—1,(B)/Iy(B), (C6)
' neg [(nLe )
c=p1— —
S o [IO(B) J J

The heat capacities in (A6) and (A5) are plotted in Fig. 6.
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