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We study the fluctuations in a lattice model of the nematic-isotropic phase transition, whose
mean-field approximation follows the Maier-Saupe theory.  We show that fluctuations significantly
change the order parameter, the transition entropy, and the precocity of the phase transition
(T,—T*)/T.. A comparison with Monte Carlo simulation data shows that the fluctuation correc-
tions remove most of the deficiencies of Maier-Saupe approximation.

I. INTRODUCTION

There exist two simple approaches to the nematic-
isotropic phase transition. One is the mean-field theory of
Maier and Saupe' and the other the Landau—de Gennes®
expansion of the free energy in powers of a symmetric
traceless field which serves as an order parameter for the
nematic phase. Both approaches describe the qualitative
features of the transition.

The Maier-Saupe approach, however, fails to account
for a number of important quantitative details. Some of
these discrepancies are as follows.

(i) The jump of the order parameter S= (P, (cos8))
across the transition is calculated to be 0.43 (see Fig. 1)
whereas experimentally it is quite often significantly
smaller (~0.3).*

(ii) The temperature dependencies of the order parame-
ter and of the elastic constants are much stronger experi-
mentally* than the mean-field results.’

(iii) The latent heat L of the transition is too large in
the mean-field calculation by a factor of 2 to 3.

(iv) The precocity of the phase transition defined as the
relative difference between the actual transition tempera-
ture T, and the temperature of instability T* (=super-
conducting temperature=would be second-order transi-
tion temperature) p=(T,—T*)/T,~2X 1073 is grossly
overestimated by a factor ~45 (Ref. 7). (See Table L)
The common feature of (i)—(iv) is an exaggeration of the
strength of the first-order transition. This is not signifi-
cantly improved if Gaussian fluctuation corrections are
taken into account.

In the Landau—de Gennes treatment, these problems .

except for (i) can be cured since the coefficients of the en-
ergy [Q is a second-rank tensor of director n(8,¢), see Eq.
(1b)]

f=a,7TrQ?+eTrQ*+ +a, TrQ*

are arbitrary parameters [r=(T—T*)/T*] and the
strength of the first-order jumps can be adjusted to experi-
ments by a suitable choice of ¢ relative to a,,a,.

As far as point (ii) is concerned, the situation is not yet
certain. While the older work® claimed to see a tempera-
ture behavior of S, S=S,+S5,7%, being consistent with
the Landau—de Gennes mean-field exponent 3 =%, in the
later phenomenological analysis the same data® was used
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to suggest a tricritical nature of the transition with the
value of B=+.° The same tricritical value of S has been
supported by the latest experiments.

This parallels the discussion of the temperature depen-

dence of the ratio of the first and second Cotton-Mouton
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FIG. 1. Order parameter as a function of b=383. Curves in
Figs. 1—3 and 5 are obtained by using mean-field theory
(MFA); mean-field plus one-loop correction (MFIL); hi_gh'
temperature expansion of Eq. (12) (HTE); effective action in
hopping expansion (EA). The crosses are the Monte Carlo data
of Lebwohl and Lasher (MC1) (Ref. 16), and the symbols X aré
those of Meirovitch (MC2) (Ref 17). For MFIL the curves if
Figs. 1, 3, 5 are truncated halfway before the one-loop correc-
tions become unnaturally large. The transition point in each
case is surrounded by a circle. The circle 1 is located by the
combined use of MFA + HTE, while the circle 2 by
MFIL + HTE.
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TABLE L. Values of some quantities characteristic to the phase transition given by different approxi-

mations, and compared with the Monte Carlo data.

MFA* MFA + HTE MFIL + HTE EA MC1 MQC2
B 1.135 1.65 1.37 1.31 1.34 1.35
S, 0.429 0.79 0.69 0.32 0.33 0.27
0.53%
(T.—T*)/T. 0.092 negative c 0.027
L 0.368 0.449 0.37 0.14 0.073 0.08

®*For abbreviations see Fig. 1.
®One-loop correction to S being included.
°B* cannot be defined (see Fig. 2).

coefficients, which regulate the dependence of S on the
magnetic field as S~c H?+4c,H*. From Landau—de
Gennes mean-field theory one would have ¢; ~7~! and
c;~7"% and so ¢, /c, ~7~% with A=2. The analysis of
experimental data in Ref. 11 seemed to deduce also here a
tricritical exponent A~%. However, another recent ex-
periment and a careful analysis of it claims'? that for the
present no definite conclusion for A can be drawn. So, the
Landau-—-de Gennes mcan-field value A=2 is not yet ex-
cluded from being correct. This point of view seems to
have been accepted also by the other authors.'

In any case the observation of a small precocity (iv)
shows that the cubic term of the Landau—de Gennes
theory is so small that the transition is almost of second
order. This implies that, if the gradient terms of Q are in-
cluded,"* the director fluctuations are rather violent and
become almost critical. Hence, simple one-loop correc-
tions are expected to be insufficient to account for the ex-
perimental facts.

With fluctuations being so important the question
arises whether the disagreements of the Maier-Saupe re-
sults with experiment are really due to insufficiences in
the physical description or are consequences of the mean-
field nature of the approximation.'” In fact, the Monte
Carlo simulations'® and the numerical calculation'’ sug-
gest that the latter option is closer to the truth than the
former. We therefore decided that there is a need for an
improved theoretical treatment of fluctuations. Only if
these are properly taken into account will it make sense to
build detailed models and seek for an accurate agreement
with experimental data.

Methods for treating fluctuations in lattice models have
recently been developed by Matsui, Kleinert, and Ami'®
(MKA) in the context of spin models. Since there the
transition is of second order and the results are neverthe-
less rather satisfactory, we concluded that the same
methods should be quite reliable in the case of the weakly
first-order nematic-isotropic transition. It is the purpose
of this paper to show that this is, indeed, the case. We
consider the lattice model'® studied by Monte Carlo simu-
lation and a numerical calculation in Refs. 16 and 17 and
treat it with the techniques of MKA.'®

II. MOTIVATION FOR THE LATTICE MODEL

The partition function of the lattice model can be writ-
ten down in the following form:

d’n(x)
z= [I;I f 4

[——

Xexp (B 3 Qu(x)Quix+i) | . (1a)

xi ki

Here x are the sites of a simple cubic lattice and i the
oriented links pointing to the nearest neighbors in the ith
direction (i=1,2,3). The matrices Qy(x) are traceless
uniaxial matrices composed of the director ng(x)
(k=1,2,3) of rodlike molecules at x as follows:

Qu(x)=ni(x)n)(x)— 18, n¥x)=1. (1b)

The d?n is the solid angle element over a unit sphere. The
quantity 3 is the inverse temperature in natural units.

The mean-field approximation (MFA) to this model is
identical to the standard Maier-Saupe resuit. When
studying the fluctuations in this model via Monte Carlo
techniques'® and a numerical method'” one finds that the
results are much closer to experiment than to the mean-
field approximation.

(i) The calculated order-parameter jump is S,=0.27
(Ref. 16); 0.33 (Ref. 17) (Table I).

(ii) The temperature dependence of the order parameter
is much more pronounced than in the mean-field approxi-
mation.

(iii) The true latent heat is L =0.073 (Ref. 16); 0.08
(Ref. 17) whereas the mean-field value is 0.368 (in arbi-
trary units) (Table I).

We therefore expect that also the precocity will be very
small, although this has not been investigated by Refs. 16
and 17. The gross features of the fluctuation corrections
will not be changed if one passes from Eq. (1) to more
realistic models (inclusion of splay, bend, and twist elastic
energies, continuum formulation, introduction of steric ef-
fects, chain flexibility, etc.).

It is, therefore, reasonable to expect that a more accu-
rate evaluation of the lattice model can give a satisfactory
description of the behavior of nematic-liquid crystals.
The simple model [Eq. (1)] will therefore be used as a test-
ing ground for the importance of fluctuations and our
ability to calculate them.

In order to approach the problem step by step, we shall
first employ conventional methods of dealing with the
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system [high-temperatures expansion (HTE] in Sec. 111,
mean-feld approximation in Sec. IV, and mean-field plus
one-loop correction (MFIL) in Sec. V]. These will serve
to establish the nature of the nesded corrections, in partic-
ular the intertwining of low- and high-temperature correc-
tions, and fo repart some new resulis,

The high-temperature eapansion, which is presented in
the next section, allows for an efficient summation of the
free energy which agrees well with its Monte Carlo &s-
timation in the isotropic phase. "%

In order to locate the transition temperature and to cal-
culate the corrected specific heat, we first employ the
combined wse of the mean-field approximation for the
nematic phase and high-temperature expansion for the
isatropic phase IMFA + HTEL This approximation is re-
phrased in Sec. IV in a language which is appropriate for
the subsequent development in Secs. ¥V and VI, The re-
sulting transition temperature (322 Fig. 1, Table [} is in
striking disagresment with the Monte Carlo resule: If the
latter is ichentified ns the true tronsition point, the clearing
point cnlculated from the MFA + HTE is located a1 &
temperature ol which most pure nematogens are frozen.
Correspondingly, the order parameter jumps to 5, =0,79
al this point,

Thus such an improvement of the isotropic phase alons
is not sufficient: The mean-field free energy is much too
large to properly locate the takeover of the ordered state.
As a next step, the Gawssinn correction, presented in Sec.
¥, is used together with the HTE to relocate the transition
temperniure at @ valee which compares well o the Maite
Carlo results {see Fig. 2, Table Il Unfortunately, there is
still & much too large order-parameter jump 5. =069,
We therefore caleulate the one-loop correction to the or-
der parameter itself (see Fig. 1. Although this gives an
improvement fo 5, =0.33, this value is still too largs to be
acceptable. The resulis oblained so far indicate that the
mean-field approximation owes its semiguantitative suc-
cess mainly to a balance among its equally poor descrip-
tions of both the nematic and isotropic phases.

It is clearly desirable to have an approximation im
which the fuctustions in both phases are treated in the
same way and with the same degree of accuracy. Such an
approximation i3 well known in the context of field
theory. It employs the framework of effective actions.™?
Instead of selecting the extremum of the clussical energy
te approsimate the Tree energy (as in the mean-Tield treat-
mienth, it approximates the free cnergy by the extremum of
a fluctuation-corrected “semiclassical™ action. In contine
uum field theory the fluctuation corrections are organized
by the number of loops in Feynman diagrams. In this
way the effective action sums an infinite subset of conven-
tional loop diagrams. It also respects the Ward identities
of the theory. In MEKA (Ref. 18} this framework was
adapted to lattice theories, replacing the loop expansion of
the effective action by a hopping expansion which con-
verges like 1/0° with D being the dimensionality of the
system. In Sec. VI it will be applied to the liguid-crystal
maodel (1), When comparing the results with the Monte
Carle data, we find an excellent improvement over the
mean-ficld Iplus Gaussian-correction) results (see Figs,
1=3, Tablz I}, For (T, —T*/T,, we abtain 0,027, reduc-
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FIG. 2. Fresenergy density as a function of &=38 Fa
MFIL there s a region, 3.37 < b £ 3,75 in which j) <0,

ing the mean-field value by a factor of 3.4, This is =i
far from the experimental values but it is hard to juds
this result, as the value of [T, =T*1/T, in the modd
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functions should yvield this information.
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INII. THE HIGH-TEMPERATURE EXPANSION (HTE)

A convenient method to evaluate the thermodynamic
quantities in the disordered phase is the high-temperature
{(small-B) expansion. In its simplest version one expands
the exponential in (1) into a power series in 8. This has
been done to O(B’) in Ref. 16. The calculational effort
rapidly increases with the power of 3.

J

exp [31‘2’ Qu(x)Qu(x+1) ] = exp[ $ 8P, (n(x)'n(x+i))]=

with coefficients

~ 1
C/(B)=(41+1) [ dz Pylz)exp[3BP,(2)] .
0

For a more efficient evaluation of the free energy it is
convenient to employ the so-called “character expansion”
well known in lattice-spin and -gauge models. Here one
first splits the exponential in (1) into a product of link fac-
tors and expands each of them into a set of functions
which is complete and orthogonal under the integration
measure for the field variables. For (1) these functions are
the even Legendre polynomials

S E(BPy(n(x)n(x+i) ()
=0

(3)

Extracting the / =0 contribution as an overall factor, the partition function (1) reads

IT 2 CuB

xd 1 (x)m0

~ d’n(x)
Z=[Co BN II | e

1 6{(/1)_

C)(B) = e |
"B 4 +1 &)

where N is the total number of lattice sites.

[T [44:(x)+1]Py; (x)(n(x)n(x+1)) ,
x4 !

4)

The coefficients C;(8) have the threshold behavior ~ B’ for small 8. Hence any configuration {/;(x)} has the thresh-
old behavior B with L =3, [,(x) and the high-temperature expansion is obtained as

Z=[CA™ 3 2z, ,
L =0

2
Z, = I f d:(rx)

II 2 Cl;m(ﬁ)’azul,(x),L

%, l(x)=0

&)

H [41,(X)+ l]lel(,)(n(_x)-n(x+i)) .
x,i

Introducing polar coordinates n= (sinf cosd, sinf sing, cosd) and using the addition theorem for spherical harmonics

41
41 +1

Py(n(x)n(y))=

m=-2]

as well as the orthogonality relation

[ Ly (6,8)Y, n(6.8)=-18 .5 7
47 lom )Y 1m, ’¢_41,- 1,1,0mymy s

T

where d’n=sin@d0d¢, one easily verifies the following
graphical rules for calculating Z; .

(i) Only networks of closed chains contribute.

(ii) Along each connected set of links without branch
points, [ is conserved (and will, therefore, be referred to as
a flux).

(iit) A connected chain of k links without branch points
contributes the following (after integration over the k —1
internal variables):

2
S Y3 (0(),6(x) Y2 m(6(y),6(y)) ©®

CckB) 4l +1)P,(n(a)n(b)) , (8)

where [ is the flux of the chain and a,b are the end points
of the chain.

(iv) Identifying the end points a=b and integrating
over n(a) one has for a simple (self-avoiding) closed chain
of k links and flux / the contribution

clpral+1). (9)

(v) For three self-avoiding chains of ky,kj,k; links
with flux /;,l5,/3; which are merged at two common
endpoints x and y one has the contribution
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huky

xy =G (BICLHBIC (B4l + 1)L+ 1(4l5 +1)

Iy ks
x) d? n(y)
x [ 4 f
21, 212 213
with
L L L

mp m,; m;

being a 3j symbol.

Py, (n(x)-n(y))Py, (n(x)n(y))Py, (n(x)-n(y))

(10)

(vi) A figure-eight loop with k,k; links of flux /,,/, on its simple loops and the central site x contributes as

|1'k|

« = a’ "(")c,l (BICI (B)4L, + )4l + 1Py, (2(x))Pyy, (n(x)

=G BICBN4L, + DAL +1) .

These rules are sufficient to evaluate the Z; up to L =8.
It remains to count the number of configurations which
contribute to a given order. These numbers are well
known from the three-dimensional Ising model and one
has for Z;, L=0,1,...,8 (see Fig. 4 for the graphs cor-
responding to these expressions) the following:

Zy=1, Z, =Zy=2y=Z5=0,
Z,=3NX5C{(pB),
Z¢=22NX5C8pB),

2
2 2
0 0 0] =NXL;QCZ(/3’),

Z;= 18N><53C7(B)

Ly=Zg o+ Zyp+Zs . +Zs g+ 23, ,

Zg,=3NX9C5(B), (12)

Zsy=3N(3N-13)52C}(B)=N(3N-13)2C}(p),
2

Zy, . =18NCY(BICLBIS*XI |o ¢ o]

=NX2C4UBIC,B),

2
Z;, 4=24NC}(B)S’ [é (2, (2,] —NxZ2cip),
Z4,=207TN X 5C}(B)=N x1035C(B) ,
Zy=N[27C3(B)+ 2 C}(BIC,(B)
+82 BN+ ZclpN? .

(11)

Notice that the lowest nontrivial contribution Z, starts
out with B* The terms given to O(B’) in Ref. 16 are
therefore all contained in the trivial prefactor [Co(B)]*Y
in (5).

2o []
(-0 (7
-

ZBD=DD+DD
w (1] - [

e
Zgs=

FIG. 4. Graphs contributing to Z; up to L =8. Solid lines
of multiplicity 1 denote links carrying flux /. Dotted lines are
there to guide the eye. Zs, consists of all possible self-avoiding
closed loops of 8 links with flux / and is not drawn here.
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To evaluate the C;(B) it is convenient to express Co(B)

as

&)= J, @z exv[%BP2<z>]=e—;%D<‘/B>=e“‘”’ )
(13a)
where
Dx)= [ dye” (13b)

is Dawson’s integral and w(p) is a characteristic function
which will occur frequently in the following sections. The
C;(B) occurring in (12) are :

1 .
Ci(B)=e P 3 fo dz(z?— L)eBe?=1/)
=3w'B),
354 5d

=z % ew(B)

(B) = —WB —
Co(B)=e 8§ df* 6dB 18

=L wB+[wPBP—tw' B —% .
To facilitate numerical calculations one may perform an
integration by parts to relate w'(B) to w(B)
1
w'(B)=e ~wP fo dz(zz_%)eﬂ(ﬂ—l/s)

__ 1 1 1 25 we
==3 2B+2Be . (15)

This may be used to express all higher derivatives in terms
of w(B) as well. In particular, the identity

” ' l 3 ’
w"(B)+[w'(B)]*= [?—7/5 w'(B)+% (16)
allows us to express C,{B) as
7 5 21 ,
C(B)= TR 38 ]w(ﬂ). (17

The thermodynamic quantities which may be derived
from (12) will be discussed in the following sections. The
critical temperature itself cannot be inferred from the
series (12) but requires an independent evaluation of the
free energy in the nematic phase. One may, however, cal-
culate the supercooling temperature T as the would-be
second-order transition point by using Padé approximants.
We do not present this here since a numerically useful re-
sult requires the evaluation of higher orders than Zs.

i dAm(X)

1=1] f_:dQ,,,(x)

—iw . 2mi
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IV. THE MEAN-FIELD APPROXIMATION (MFA)

We will formulate the mean-field approximation as a
saddle-point approximation to the partition-function. in-
tegral (1). This is convenient both for the calculation of
loop corrections in Sec. V and to introduce some of the
notations which will be used in the effective-action calcu-
lation of Sec. VI. To employ a saddle-point approxima-
tion one has to change from the restricted fields n(x) in
(1) which obey n*(x)=1 to unconstrained field variables.
This may be done by a decomposition of -the matrices
Q(x) into [ =2, m =0,+1, +2 helicity components

OO A YR O
“Vstvz 2 %
Y_2 Yo Y2 Y—I
= — = T = - ’ 18
¢ V2 Ve Vi TV s
Y, Y_, 2Y,
Y V2 v’6
where the Y, are the following functions of 6 and ¢:
3 172 2 12
Yo= [3 (cosze—%)= [-i% Y,0(6,0),
6 12
Y, = —V2sinf cosd cosp = 1_51T ReY,(6,¢),
172
_1=—V'2sinf cosfsing = ETH ImY,,(6,¢),
, g - (19)
Y2=725in29cos(2¢)= ’I_Sﬂ— ReY,,(6,¢),
1 16 .
Y_,=—x sin’0sin(2¢) = —l—s’i ImY; ,(6,4),

and the Y, ,(6,4) are the spherical harmonics normalized

as in (7).
Introducing a suffix m =0,+1,+2, one has for the ac-

tion in (1)

szl(x)le(x+i)
k1
=S ¥, (6(x), (X)) Y (B(x+1),$(x+1)) . (20)

One may introduce unrestricted field variables by insert-
ing into (1) the trivial factor

— exp [— D Ap(xX)[Qn(x) =Y, (x)]

The integrals over the original director variables n(x) can now be done as they factorize into independent integrals at

each site. This gives

© dQny(x) io dAp,
2=gf_w ?/57:‘ :iw—'ﬁ%)‘exp[Bx%‘,QO(x)Qm(x+i)—X’EMA,,,(x)Q,,.(xH-;V[A(x)] , 1)
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where V(A) is given by the single-site integral
d’n
eV = f o P [§A,,,Ym ]

1 27 T .
=Efo do fo d051n0expl§AmYm(9,¢) .
(22)

In a saddle-point approximation to (21), Q,, and 4, are
solutions of

A, =680, Qn=214) 23)

04,
One easily verifies that 4,, =0,, =0 (all m} are a solution
of (23) for any B. For B> 1.122 there also exists another
nonzero solution. Choosing the bulk orientation for the
uniaxial nematic phase to be in the third direction, one
has A4,,=Q,,=0for m=+1,%2 and

172
S,

172

2
a, QOE Y

Aoz 3

3
(24)
a=6BS, S=3w'(a), wl@)=V(4)|4,,=44,=0-

S is the usual order parameter (P,(cosf)) and
w(a)=V(4)| 4,,=4,,=0 is the characteristic function

which was defined in Sec. III [Eq. (13)].
In this approximation, the free-energy density is

(25)

The a,S=0 solution dominates over the a =S =0 solution
in free energy for B> B, mp=1.135 (see Figs. 1 and 2).
The jump of the order parameter, the latent heat per site,
and the supercooling value for j are (Table I)

S(B‘-‘vMF):SL‘,MF=0-429 ,

Lyp=A ;dEBfMF =25\ =0.368 , (26)
T'

Bir=1.25, 1——2—-0.092 .
¢,MF

Let us now try to improve these results by using the
free energy calculated by the high-temperature expansion
in Sec. III. It intersects the mean-field free energy at
B.=1.65 (see Fig. 2) which is much larger than the Monte
Carlo values. The associated value of the order parameter
is §,=0.79, and the latent heat per site is L =0.366
(Table I).

So the improvement in the isotropic phase alone which
is provided by the high-temperature expansion is not suf-
ficient to improve the phase-transition picture. Correc-
tions in the nematic phase are needed as well in order to
obtain a reasonable value even just for the critical tem-
perature.

V. THE ONE-LOOP CORRECTION
TO THE MEAN-FIELD RESULT (MFIL)

The loop corrections to the mean-field theory may pe
obtained from (21) by expanding the field around thejr
stationary (mean-field) values

Om(x)=(3)1288,, 0480 (x) ,

@n
Apn(X)=(3)1%a8,, o+i 8Ap(x) .

At each site one has to expand

2
Vid)=1n f‘i—:exp a(cosze—%)+i2Ym(9,¢)ﬁAm

—w(@)+i 3, (Y YoBAr

3 3 (YYo= Ym o Y )o)+A(84) .
mm (28)

Here ( ), denotes the single-site expectation values,

E'_Z_”_ a(cos?0—1/3)
I iCXal

(f(8,4))o= ’ (29

2
f d nea(cosze—l/S)
4

and A(84), contains all terms which are cubic or of

higher power in 3A4.
The { )¢ expectation values are easily calculated to be

(Yo)o=(3)"*(cos0—1)o=(3)""W'(a) ,
(Y3)o=3((cos’0—3)*)o
=3 {w"(@)+[w'(@],
(Y1)o=(Y%)o={sin’0cos’), (30)
=4 —[w'la)—¢P—w"@),
(Y3)o=(Y2,)o=1{sin*d),
=4w"(@)+[w'(@) -7,
with all other (Y,, ) and (Y, Y,, ) vanishing. So one
has
V(d)=w(a)+i(3)"w' ()54,
~ 33 (84, +AB4) ,

3D
" ’ 3w,(a)
fi=fa=t—w'la)—[wla)— ===

2

3
1+2a

w'(a)
4

For the last equations, the identity (16) has been used.
The partition function (21) is
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_ —BNIMFII feo dSQm(X) o dbA,(x)
- e Var

The quadratic part of the action is

5Qm(y)
y=7 wzm[SQ,,,(x) 04, (x)1G \(x,y) 54,,(y)
(33)
with the propagation matrix
-B3(2+V,v,) i
Grlixy)= l i fo Ssy» (34)
where

Vif(x)=f(x+1)—f(x),

are the lattice derivatives.
If one neglects the cubic and higher terms in 84, the
one-loop-corrected free-energy density is obtained as

“fMFlL=—fMF"‘—2trlnG~l

Vif(x)=f(x)=f(x—i)

(35)

where fur is given in (25). To evaluate this expression it
1s uscful to go to momentum space and to introduce the
lattice Yukawa propagator

1

. (36)
p2+2 31— cosp;)
i

lu,p)=

This gives
—fMFL= "'f MF

525 )3 <o 10 Bf T D))

exp [—Sz(SQ ,84)+ 2‘, A(8A4(x)) ]
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(32)

U
In the isotropic phase, all f,,
masses in this phase are

=—,2-,- and so the degenerate

pl = 15 —6 (isotropic phase) .

2B
They vanish at the supercooling temperature Byp=1.25.
In the nematic phase, the masses associated with the
m=+t1 modes vanish. The m =+2 biaxial fluctuations

(39

" are much more massive than the m =0 size fluctuations.

The one-loop corrected free energy (37) (see Fig. 2} is
unp.iysical in the region around B, yqg. This is a common
feature of theories which exhibit a first-order transition in
the mean-field approximation and is caused by the large
value of trlnv~! for small masses. In the isotropic phase
the negative free energy is grossly overestimated as 3 ap-
proaches Byr. This will eventually be cured if a sufficient
number of loop corrections are included. In the nematic
phase, further loop corrections would also improve the
free energy. However, the region between B, yr and the
true B, will be expanded around the wrong ordered
ground state and finite orders of the loop expansion can-
not generate the singularity in the frec encrgy at S,.

To avoid the unphysical region of the one-loop correct-
ed free energy, one may use the high-temperature expan-
sion for the isotropic phase (MFIL + HTE). Its free en-
ergy crosses the loop-corrected free energy of the nematic
phase in a region where the latter approximation may still
be trusted (Fig. 2). The critical point is then located at
B=1.37, quite close to the Monte Carlo data which gives
B. at 1.335 (Ref. 16) and 1.35 (Ref. 17). (Latent heat per
site: still L =0.37 [see (26)).) However, the order parame-
ter has the value S =0.69 on the MF curve (24), which is
much too large (Fig. 1, Table I).

To tmprove its value, we now calculate the one-loop

(37 correction of the order parameter. Using (27) we have
The fluctuation masses are | SmriL =S +(3)"%(8Q0(x)) . (40)
ph=p . =73—}— -6 (38)  To calculate {(8Qqy(x)) we have to invert G, '(x,y) (34)
i ]
lv(p2 x—y) =Lt x— -y)
| gHm T G2 %x—y) G2M(x—y)
Gm(x,y)= 1 = |G Px—y) G (x—y) “h
v( 2 X—y) — (8, ,— (u%,x—y) i "
BT, m R =Y 7 By Bf,.. Bfm HmXTY

The matrix entries G'@9?, G'@4=G'4?, and G'* '“A?ropagate the Q—Q, Q< 4, and 4— A4 fields. The one-loop

contribution to (8Qy(x)) is given by a propagator Go
t3-vertex) contained in A(84) of (32) and a second G, "

(x,y) which propagates the 8Q0(x) field to a three-point vertex
'(y,y) which contracts the remaining two legs of the 3-vertex.

The 3-vertex is obtained by continuing the expansion of V(A4) started in (28). We only need that part which contains

at least one 8Ay(y) field. This is easily calculated to be

bimm[84(y)]= —-—- zaAom[sA (y)1%380,m,m — 26m,080,0,0) »

42)

Bomm={ Yo¥2 )o=(¥5)ol Y2 )o=2( ¥ )o{ { ¥3)o— (¥ )3}8m0 -
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The one-loop contribution to {50 x1) is

(8Qolx) ) 1ioop=— 3 Z GV 1xyIGR" 13y 80 mm - (43)
¥.m
Performing the summation over y and using (38) and (41), this is
+6
(BQuLE) Y, pop=— z il Ssan ek L= (e, + 6l 0] . "

The g8 mm 078

Bo=goao=17 P {{cos?0— 1) g =11 P 0™ la) ,

B1=8_1=gq1,1=80,—1.-1 =2 $ 1" {(cos™0— § )sin"@cos™d cosd bg, =1 F 12— ;;' —[%Jmﬁlﬂw"ial—w'inh] . i4%)
g d)f W'la)  wia)

Er=8_1=fu21=80_1_2=TF{)"*{(cos’d~ -J-]m‘&m*l&:m-15"rmﬁ-|%nm _&:: et |+~;;

Here { ), denotes the connected part of | )5 Al the
transition point of MFIL 4+ HTE (8, =1.37) one obtains
for the one-loop-corrected order parameter the result
&, =053 which is still too large. Moreover, its 5 depen-
dence is too weak close to the trapsition (see Fig. 1),

¥1. EFFECTIVE ACTION IN THE HOFPIMNG
17D EXPAMNSION (EA)

From the argoments given in Seca. IV and ¥ it is clear
that we need a self-consistent method which treats the two
phas=s on an equal footing and respects well the impor-
tant fluctustions in the transition region. As mentioned
in the Introduction, the formalism of effective action™
will serve as such a method.

In Ref. 18 the effective action of O{N) spin models in
D dimensions was mluntad up o the two=loop level, once
ina mmll[:]: 170 :;pmmm and once in a hopping 17D ex-

pansion.” The main results were as follows,
|

o d0(x) e ddix)
eI B “‘

where 1 x.¥) is the hopping npeulm'“
Hixy)= Eta +8& ..

im1 7 +| B y—i

At this stage it is convenient to integrate over @y, (x)

- l'[f. d.i..ur

¥,

152

and to introduce new wvariables & (x) which canmcel the
Tunctional determinant in fromt of the exponential
Anixl= T 215 yid, (y)sdalx),
" 149)

1
Pxyl= mﬁu.rr ;

Then & becomes

7 & O (XIH Y00 ¥) =i T Qulnld, t:h}‘,r{a (x})

l — [ Aix'E ~tixyid,, r,-.rJ+£m (x))

LY¥.m

r

i) Both expansions describe the thermodynamic proper.
ties and second-order transitions quite well for D= 4,

{iit For D=3 and N=1.2 the simple 1/D expansion
gives very good values for (the sscond-order) tramsition
temperatures ,. However, it also predicts a weak first-
order transition, even though the model has a second.
order transition. The | /D hopping expansion, on the oth-
er hand, gives & somewhat worse value for T, but predicts
comrectly o second-order transition,

Thus, the two-loop effective action with a hopping expan-
sion appears (o be a reliable tool for studying approxi-
mately second-order phase  transitions.  Since the
nematic-isotropic transition is weakly of first order we ex-
pect the approximation to be even better than in the O(N]
spin models, We start by extending our three-dimensional
simple cubic lattice of the model (1) to 8 D-dimensional
hybercubic lattice while kesping the component of direc-
tors to be three such that there are five polarization stabs
as bafmtmism < 1). Afer rotating the contours of in-
tegrations™ Z of (21} reads

{460

5, m

4T

r

Z=T1 [~ dé.ixiexpa(s], 50a)
Lm -

T i
Al)== 3 3 dnixibntx)

+ X Vidnlx))— %.nr Inidwh) , (506}
z
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Let us now evaluate each term in I'(®) of (55) separate-
ly by expanding each propagator in the diagrams in
powers of H( x,y). As one will see, this procedure gives
rise to the hopping 1/D expansion. We start with the
one-loop part Iy,

k
1 el b 1 1 Ak
== —fm | —=— > H“(x,x)
38 (b 3
b o, 3 1 |Laps £ 6
=3 | =i+ |1-== bif
% 2/t 1-55 bfi | +OH®),
(60)
where we used the formula
HYx,x)=2D, H*x,x)=6D(2D—1),
(61)

I?'"(x,x)=0 for m odd .
Notice that this hopping expansion is a modified 1/D ex-

where it is convenient to define the modified correlation
function of the @ fields [see (49)] as

6ij(X,Y)= <@,(X)&JJ(Y)>

= zt DVx,2)G(z,0) D A(Ly)
z,

A

By using the hopping expansion for a,-j(x,x),

@ij<x,x)=aij%b2ﬁ+0(p—2), (64)
and the matrix element of (59), I‘Q becomes

4
5 /N=;—2-F4(a)+0(D‘3) ,

pansion if b,® are counted as O(D°).? Next there are (65)
two two-loop diagrams, 8and , contributing to . 5
[5(®).2¢ For the diagram 3 we calculate Fyla)=75 |hofo+8h1f1f>
1 A A A AN
I /NZZW S Vi @i(x)9;(x)Pi (x)y(x)) 2 . )
S 1 ® gkl + > (4horfofi+ Thific)
=N > V,-jk,[é,-j(x,x)@kl(x,x)-l-Z terms] , k=1
X bkl (62)  For the @ diagram we have
J
1ot f1]
Do /N=—23 — 50 | VigVimn 2 (@)@ (X)P (X)D(Y )P (Y0 (¥) ) 11 - (66)
< N2 (|3 el
Imn
I
By noting Using the quantities g(a) as defined in Egs. (45) and (59)
N N A A N we finally obtain
(@i(x) - Pu(y)) 1p1=Gt(X,¥)Gjom (X,¥)Gn (x,y)
b? -
+5 terms , 67) FG/N=FF3(“)+O(D 3,

and performing again the hopping expansion, we find

1 1
Co/N=—33|— [(Vig)?
© N'%k l(3!)2 i)
1 A
x —_— e ———
so |2
2b 2D

Xy

3
%’ (2D)+0(D~3),  (68)

11
=—— Vi )?
2 3! %‘ i)

where we have used the formula

1 ~ 1 <2
— S [Hx,y)P=— 3 H(x,y)=2D . (69)
N Xy N X,y

(70)
Fyla)=+[g3+6(g?+g3)+12¢%].

It is easy to see that diagrams having / loops start to con-
tribute to ['(®) in the order of D ~'. Therefore, working
up to the two-loop level we have exhausted all the contri-
butions up to O(D ~2). Actually, apart from the particu-
lar polarization dependence of interaction vertices, the
general structure of propagators is the same as in the
O(N) spin model'® and gives rise to the same prefactor
(b*/2D? b3/6D?, etc.) for each corresponding diagram.

In summary, our effective potential I'(®) in the hop-
ping expansion up to O(D ~2) is given by

T(®)=Tye( @)+ (@) + [ (9)+I(®) (71

where the first zero-loop (“tree”) term Iyo(P) reads sim-
ply
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2
2+V((I>) .

Tl ®)/N=A(®)/N + % In(d7b )= — TS

(72)

More explicitly I'(®) has a structure

a’ b, 2AF2 4 £2) _ILJ_F
r(¢)/N=—-—67;+w+53[fo+ fi+/2 ]+1>2 3

3

b4
> [fo+2/ 1+ DI+Fe | 7 s

1
2"

(73)

where a=(3)!/?0,

ViI. TEMPERATURE BEHAVIOR
OF THERMODYNAMIC QUANTITIES

We now proceed to impose the stationary condition (57)
to the above I'(®) and solve for P as a function ®(b) of b
fand D). This ®(b), in turn, is inserted back into ['(®) to
give the free energy F,

—BF=T(d(b)) . (74)

The calculation of 8T(®)/8d is straightforward but the
expression hecomes rather lengthy and is therefore not
given here. In the course of the caleulation it is helpful to
make use of functional relations such as (16), for w(a).
The solution ®(b) for D=3 can be obtained numerically.
It has the two branches, =0 and ®=0, as ex?ected.
The order parameter S is given in terms of ®(b) by*’

3 172

2

1
S=(Py(cosh)) = >

This is due to the definition S =(3)'72(Qg"), and the re-
lations [see Ref. (22)]

26(QuY =AY, d=(A4"™), (76)

which hold for the system described by (46) and (48).

The resulting curve S(b) is given in Fig. 1 together
with those obtained by other methods (MFA,MFIL). In-
serting ®(b) back into (74) we obtain the free energy per
site (times —f3), —Bf, which is given in Fig. 2. The take-
over point of the ®:0 branch over the =0 one in —Bf
locates the first-order phase transition at b,=3.93 with
$,=0.32. It is important to find that the behaviors of
both S and the free energy are in a much better agreement
with the Monte Carlo results (MC1,MC2) than the
Maier-Saupe curves (MFA) and the combination of high-
temperature expansion with one-loop-corrected mean-field
approximation (MFIL + HTE).

As can be scen in Fig. 1 the size of the first-order tran-
sition has become quite weak due to fluctuations. Actual-
ly (T,—T*)/T, and AL are smaller than those of MFA
by factor ~3.4 and ~2.6, respectively (Table I). Here
T* is the temperature of instability of the point ®=0 [see
Eq. (80) below].

The free energy can be used to calculate the internal en-
ergy per site U= —d(—pBf)/dB. This, in turn, is directly
accessible to Monte Carlo simulations (MC1,MC2). We

=Ll
db)=7-alb).  (75)

see.in Fig. 3 that the agreement with those data is com-
paratively good. A further differentiation gives the
specific heat per site C=—[82dU/df and the theoretical
curves are shown in Fig. 5.

In the isotropic phase, the free energy is given by set-
ting ®=0 in I'(P) and reads

T(O)/N=—Bfr,1,

_2b* 8 b
T 45 D ' 2835 p?
4
+ 8 24 b (77

45225  45x225X2D | pD? °

This expression agrees with the high-temperature expan-
sion of Sec. III (Ref. 28) except for the last term of
O(D~?%), which should be compared with (—76/45
X 225X 7D)b*/D>.

In the region of low temperature, the free energy for
D =3 can be expanded in b ~! by using the asymptotic ex-
pression of w(a) for a >>1 as follows:

~Bf=%b—1Inb—1.286+0(b""), (78)

where the genuine 1/b expansion gives the same first two
terms and —1.268 for the constant term. The effective
action has the advantage that we can dircectly calculate a
Landau expansion for ['(®) for a small-order parameter
P,

N(®)=T(0)— s M2(b)( 2D +A(b)D* +g(b)D* +0(D%) .
(19

The point of instability b* is located by the condition
M?*b*)=0 as b*=4.04. Since M3(b) is the inverse of

14 T T Ll T

12]

10

8

c
&

FIG. 5. Specific heat per site C vs b=38. No data from
MCI1 or MC2 are available.
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FIG. 6. Mass square of Eq. (80) vs T=1/p, together with
the linear line given by MFA of Eq. (72). The arrow indicates
1/8. in EA.

the two-point correlation at zero momentum it is inversely
proportional to the total intensity of light scattering in the
nematic phase. In Fig. 6, M? is plotted versus T=8"".
It behaves approximately linearly as

MYb)~A(T-T*), T*=(B*)"! (80)

and 4 is ~0.095 near T* and approaches at T >>T"* to
its mean-field value 5. Let us end this section with the
remark that the limit D— o of the effective action
reduces to I'y,.(®) of Eq. (72). This is equal to the mean
field, i.e., the Maier-Saupe result, which therefore is exact
for D— .
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APPENDIX

The interaction vertices g(a),h(a), which were defineq
in Eq. (59), can be expressed in terms of the derivativeg
. =w™(a) [recall Eq. (15)] as follows:

1
gxz=ﬁ[ws+3w1wz+(wn)3—wz—(wl P+51,

(A1)
h0=%LU4 N (A2)
hoy =3[ —ws—2(w;)*—2ww; +Fw;] , (A3)
hozz%[w4+2(w2)2+2w1w3—%w3] ) (A4)

By =T [we+ (W) +4ww; +2(w, ) w,

—(wy) = Fws— Fwiwy + T w + Fw,

+%(wl)2_%7wl_sil] ’ (A5)
By = [ws +(w, )+ 4wy w3 + 2w, ) w,

— (W) = Fws— Fwiwy + Fw, P+ 3w,

— 5w P+ Fw -], (A6)
hiy= 1] —ws— 20w, 2~ 4w w3 — 4w, w,

+ 3w+ Fwwy — 3w, ] . (A7)
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