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For the above second-derivative Euclidean Lagrangian, the quantum statistical probability
distribution (x,v,7,|x,v,7,) that an orbit x(7) with initial position x,, and velocity x, =,
arrives at a final point x, and velocity x, = v, is calculated.

. INTRODUCTION

The behavior of many physical systems cannot be un-
derstood without allowing for higher-gradient terms in the
field energy. In relativistic quantum field theory such terms
have not enjoyed much popularity, due to notorious difficul-
ties with positivity of either the energy or of the metric of the
quantum mechanical Hilbert space.! In statistical mechan-
ics, however, such terms are ubiquitous and impossible to
avoid. Some examples follow.

(1) Polymers on an intermediate distance scale are stiff
objects and their energy requires the inclusion of a bending
energy which involves the square of the second derivative,
¥*(s), where s is the length parameter of the space curve.?

(2) The walls of many living cells are free of tension and
undergo fluctuations controlled mainly by second-gradient
curvature energy.’ This makes the fluctuations so large that
they can be seen in an ordinary light microscope, as first
observed on human red blood cells in 1890.* These giant
fluctuations are crucial to prevent the cells from sticking to
each other, in spite of their attractive van der Waals forces.’

(3) The formation of microemulsions cannot take place
without the ampliphilic soap layer between water and oil
losing its surface tension.®

(4) The strings of color electric flux lines, which bind
quarks and antiquarks, can lose their tension in a phase tran-
sition, in which case they are controlled completely by sec-
ond-gradient elasticity.’

(3) Finally, the cosmos at an early stage of evolution
may not have been controlled by the Einstein action, but by
the Weyl action which involves the square of the curvatures
and thus contains the square of two derivatives of the metric.
The geophysically observed deviations from Newton’s law,
when masses come closer to each other than ~ 200 m, could
be a signal for such terms (the sign is correct).?

Il. THE PATH INTEGRAL

In all these physical situations, the prototype of the fluc-
tuation problem to be solved is the path integral

(xyv,7, |X,0,7,) = f .@x(f)exp( —f ber(r)) ,

x(1,) =x,, x(r,)=v,, (1)

x(ry) =x,, x(1,) =v,,

with the Euclidean Lagrangian ( - =d /dr)

Ln =520 + 25 + %xzm _j(mx(r) . (2)
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In order to make all integrals convergent we have rotated the
time variable ¢ to imaginary values t = — ir.
After rescaling the variables 7 to 7 = x~'/3r,, and in-

troducing the frequencies w,, », via
w0} + @3 = (m/2)x" 13, w? w2 = k'3,

(3)
we are confronted with the probability distribution

(X0, |X,0,7,) = J- @x(f)exp( —_ fb dTL(T)) ,

x(r,)=x,, x(r,)=v,, 4)
x(1,) =x,, Xx(r,)=uv,,

where L is now the Euclidean Lagrangian

L=}{[%+ (0] + @2)X* + 0? 0}x?] —j(T)x(7) (5)

with an appropriately rescaled current (j = «'/3j,,, ). This
can be separated into a pure surface term
Lo-da_df1

dt del 2

plus a source term

(XX — x%) + (0} + ? )xfc] s (6a)

Th
Lsree = —f drj(r)x(r), (6b)
plus a term
Ly =x(¥— (0} + 03)% + 0 02x), (6¢)
which vanishes for solutions of the free field equation
(97 —a?)(d} —w})x(r) =0, (7)

These correspond to two independent harmonic oscillators
and have the general form

xq(r)=Acoshw,(r—7,) + Bsinhw,(r—7,)
+ Ccoshw,(7—71,) + Dsinhw,(r—17,) . (8)

(The two oscillators can be exhibited by introducing the two
auxiliary variables ¢, = X — w}x, ¢, = ¥ — @?x and noting
that L, = [¢,(97 — @3 )9, — 4,(9% — 0})q,)/(@? — w?).
The negative sign in front of the second term leads to the
difficulties with a quantum mechanical formulation due to
an indefinite Hamiltonian.) The proper measure of integra-
tion in the path integral (4) is found via the canonical for-
malism. For a higher-gradient Lagrangian (3) we can follow
the method of Ostrogradski,’ according to which
x(7)=v(7) may be considered as an independent degree of
freedom replacing the Lagrangian (5) by the equivalent one

L= 10 + (0} + 03)0? + 0} 02x?) — ip(x —v) —jx,

(5"
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where the Lagrangian multiplier p(7) ensures the correct
rclation between v and x. The canonical momenta are

= i(dL /3x) andp, = i(3L/db) = iv such that the Ham-
11ton1an 1s

H(pxp,v,7) =ipx +ip,o + L
=47 + (o + 0}
+ o? wixdip, —j(r)x, (9)
with the Hamiltonian equations of motion
p=- % = —of @x +j(7),
i = H=pv, _H _, (10)
p, p

It is now straightforward to specify the measure of the path
integral. In phase space it has the form

(x,0,7, |x,0,7,)

f@x@uf

Xexp( f "dr{ipx + ip, b — H( p,x,pv,v,T))) . (11

where { < x means, as usual, the product of all

N -
HJ dx,
n=14+J — o

over the time sliced positions

»@pu

X, =x(7,),

where €= (7, —7,)/(N+1) and x, =x(7,), x,
=x(7y4 ) are held fixed, and fZp/2r is the product of
integrals

(T AP
nI=I] J—ee 27T

involving all N + 1 momenta that appear in the canonical

T, =T, +€n,

N+1
f dripx = zp,, (x, —x
n=1

n—l)'

The same rule applies to the conjugate variable pairvand p,,
which aresplitintov,,...,vy , ; andp,, soiPyy, , Witho, =,
Un41 = U, held fixed and the canonical integral measure is

T [ 2 12
nI:IZ on HZ —w? ( )

By constructlon, the amplitude (11) and hence also (4) sat-
isfies the Schrodinger equation

(H( —id, x, —id,,v,7) + c?,)(xvflx'v’r’)
=(=107 + (@] + 0})V* + 0} wix
+vd, —j(r)x + 3. )(xvr|x'v'T")
=8(x—x")6(v—v")6(r—7). (13)

Using (11), it is now straightforward to obtain the measure
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of integration for the pure x space path integral (3) as fol-
lows: Integrating out the variables p, and p,; gives a product
of § functions

N
H 5(xn — X,

n=2
which can be used to eliminate the integrals over v,,..., Upy
thereby producing a factor 1/eé¥~!. The integrals over

PVay--.; PUx 1 produce a further factor (1/y/27€)N. Thus
the measure of the path integral (3) can be written as fol-

—ev,), (14)

lows:
N o0 ©
ng(T) =€ H [f dxn ]f dplf de+l
n=1 —w A J2TmE € -
Xexp[ipy 1 (X1 — Xy — €Uy, )
+ip(x; —xp —e€v))] . (15)

We may now also integrate out the remaining two momen-
tum integrals, thereby eliminating the integrations over dx,
and dx,. For the calculations to come it will, however, be
convenient to leave the measure in this form.

Due to the quadratic form of the energy, the integration
over the spatial variables can most easily be done following
the same procedure as developed for lowest-gradient qua-
dratic energy in Feynman and Hibbs.'® We expand all orbits
around a fixed classical trajectory x (7), which connects
the initial point x, at velocity v, with the final point x, at
velocity v,, and write x(7) = x, (7) + 8x(7). The fluctu-
ations 6x(7) then have the property that

ox(7,) =6x(7,) =0, (16)
Sv(r,) =dv(r,) =0

Inserting this into the action & = §7* dr L(r), there isa

classical contribution coming entirely from the surface term
(6a),
o g = §[vp %, — X%,

+%(a)f + w3 )X,0, — (ab)]|x=xc,(¢) , (17

plus a contribution from the source term (6b)

dcl,source = - fb de(T)xcl (7-) ’ (18)

plus a fluctuation piece,

o= [ arf L {607+ 0f +0b 550+ ]

—j(r)éx(r)] . (19)

Hence we may write

(X0, 7 |X,0,7,)
=e_‘“,cl.sl‘"&[cl,soumefg 6x(7’)
Xexp(f b[%[(ax)z + (@ + ) (65)?
" (20)
+ o} o} (6x)2] —j(r)éx(r)}) ,
ox(r,) =0, 6x(7,)=0
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0x(r,) =0, 6x(1,)=0

where dx(7) has now a measure like (15) except that
Oxp 41y 6%y, 80y, 1, and 5v, vanish at the end points, i.c.,

f@ Sx(1)=¢€ [f ] aps
n=l w \2m€ € » 21
* dpyya
Xf_m 27 ¢

The vanishing of §x,, 8x . , implies that §x(7) has only the
Fourier components

—i(py 410Xy — p1Ox)

(21)

x(r)=_|= 2 6x,, sinv,, (r—1,), (22)
m=1
withf=7, — 7, and frequencies
Vo = (7/B)m . (23)

In terms of the Fourier components the exponential in the
fluctuation factor (20) reads

exp[—— Y (5 + 0]) (22 + w3)(8x,,)°
m=1
+J~ drj(r)\/%zéxm sin v,,,(*r-—T,,)] ,
where
05, =(1/68)(2 — 2 cos v,,€) = (4/€*)sin*(v,,€/2)
(24)
are the squared eigenvalues of the differences

[(x, —x,_)/€] in Fourier space. Since the Fourier series
has a unit Jacobian, the measure (21) becomes

N ® dbéx, (= dp
f@&x(r)=6mr=[1 2re € —wTﬂ'l

XJW dpy 41 ¢
—w 27

Neglecting for a moment the couplings to py, , and p,
and to the current j(7), the pure 8x,, part of the integrals
gives the product

N
e[ I (€02 + 0?0 +62w2)]
m=1

—i(py 410Xy — p18x))

(25)

> € . (1)16 : 026 . (26)
N—o sinh v, sinh @, 8
In Fourier space, the couplings to py .. ;, p,, and the current
amount to

1 11 1 1 B

2 N
— Pyt E Y 6x, sin(v,,¢€)
2 N
oy [ 5 3 dx sint, (5 - )

+fbd1'j(T)J‘ Z Ox, sinv, (r—7,). (27)
Ta m=1

This can be rewritten as

2 ,
E[ - I(PN+1 _Pl)m

—i(pyy1 +21) éx,, sin(v,,€)

m=24,,...

+ fb drj(r)y 3

Ta = 1,2,3,...

Ox,, sin(v,,€)
= 1,3,5,...

ox,, sin (v, (71 — ra))] . (28)

In the absence of a current, these terms lead, after the 6x,,
integrations, to the additional momentum integrals

® dp, (% dp, €2
2 (l/é'z)sinz(v,,,e)
X_
B m=lz.3,s,... (2 +0})(Q2 + )

e 2
—7(p~+1 +20)

) (1/€%)sin%(v,,€) }
(Q% +0?)(Q + )

Due to their fast convergence, the sums can be replaced, for
€-0, by
‘V2

—z (VZ +(0|)(‘V2 +w2

_2 1 Z( o o )
B ol —w} T\ +ol v +al)

These sums are equal to
l (28 coth w,ﬂ

(29)

B m=2,46,...

(30)

(12)), for even m,

B(ﬁ)l “wz)\ 2
b, = ! (2 lﬁtanh ‘ﬂ (12)), for odd m ,
B(w? —wz)\ 2

(31

such that the integrations over py, ;, p, yield the further
factor

2r € 2 /DeD

—w 2mJ_ o 27

_J
o] — @} |
T2 2 [(@,872)coth(w,8/2) — (12) ]"*[(@,B /2)tanh(w,B/2) — (12) ]2
B (7 — w})y/sinh @, sinh w8 (32)
27"62 \/(a), + 3 )sinh ,8 sinh 0,8 — 20,0,(cosh w8 cosh w,B — 1)
If the current is nonzero, the expression (29) is replaced by
B 135 (f drj(r)sinv,, (1 —71,) — —i(pysy —py)siny,, 6)
H. Kleinert 3005
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o
X(f dr' j(r')sinv,, (' —71,) —i( py, — p,)sin vme)[(ﬂ,z,, +0})(QF +w3)] !

2
4+ =
B m—245

( drj(r)sinv, (r —7,) —i( py o, +p,)sinv,, 6‘)

x(f ar' j(r')sinv,, (r' — 7,) —i( py, | + p,)sin v,,,e)[(ﬂf,, + 01) (Q}, + @3)] 'l} .

This gives an additional term in (29),

exp{ f drf dr' G(T’,T )1(7')](7')]
XCXP[‘ie(PN+1 —Px)f drj(r)h, (1)

— ie( PNy +P1)fd7j(7)hg(T)] s
where

~ 2
G( ,I)=_'
7,7 ﬁ;

sin v,, (17 —
(9%, + 0})(Q% + @3)

T)sinv, (7' —1,)

h () 2 (1/e)sin v, esinv, (r—71,)
o\T) =—
B m=3s... Q2 +a)f)(ﬂ’2" —-a)§)
(33)
2 (1/€)sinv,esinv,, (r—17,)
h (1) =—
m="2,4,6,... (Q% + 0?)(Q% — )

If we now integrate out the momentap, , ,,p, the exter-
nal source yields the factor

exp[ f drf dr' j(r)G(r,r)_;(T)] (34)
where
G(T,TI) — 6(7',7'1) _ he (T)he(T ) _ ho(T)ha(T)
D, D,
(35)
J
la)l _wzl

—

This is the correlation function of the fluctuations 8x(7),
(x(1)0x(T)) =G(r, 7). (36)

Since 8x(7) vanishes at the end points 7 = 7,, 7 = 7, and
has zero velocities, also G(7,7') must have this property.
Indeed, the vanishing of G(7,7,) and G(r,,r) is trivial to
see. The zero velocity at the end points, on the other hand, is
a consequence of the two properties [ which follows directly
from (33) and (31)]:

FG(T’T)I’_’ =h, (1) + h, (1), (37a)

L=, am
Hence

-d——,—G(T,T)IT_T =0. (38)

Collecting all terms, we arrive at the probability distri-
bution

(X0 7y |X,0074)

= F(B)exp[ _‘ J{cl,sf - dcl,source

+% f "ar f df'j(T)G(r,T’)j(r’)] , (39)

with the fluctuation factor

(40)

F(B) = o,
27

\/(wl + w3 )sinh 83 sinh @, — 2w,w,(cosh @ ,B cosh w, B — 1)

The terms .7 and &/ source are the only ones that depend on the initial and final variables x,uv,, x,v,. They will be

calculated in the following two sections.

Ill. THE CLASSICAL ACTION FOR ZERO EXTERNAL SOURCE

The starting point is formula (18). All we have to do is express the quantities ¥, , ¥, , X, , and X, in terms of the initial and
final variables x,v,, x,v,. For this purpose we invert the matrix relation

X, A
X B
b =M ’
X, C
X, D
with
3006 J. Math. Phys., Vol. 27, No. 12, December 1986
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1 0 1 0

(& $ (43 5
M= ,
0 W, 0 W, (42)
@D1S) W€ W8, @0,
where ¢, =cosh @,, 5, =sinh w8, and find
2 2 2 2
M~'=(1/|M|)R, (43)
where |M | is the determinant
M| = (&% + 0})s15, — 20,0,(cic, — 1), (44)
and thus precisely equal to the expression under the last square root in the fluctuation factor (40). The matrix R is equal to
—ww;(cc, — 1) + (025152 @,0,(¢c; — ¢;) — @1C153 + @55, @D1S; — W8,
R = @1055/C; — W} €5, — 0,055, + W35, @185, — @y(cic;, — 1) @,(cy —¢3) (45)
w15,5, —ww,(c0— 1) — 0,0,(¢; — c,) @€y — W,5,C; — @5, + W55,
— a)fs,cz + 0,w,0,5, wis, — W,00,8, @,(cic; — 1) + w,8,5, — w,(c; —¢,)
This gives
3 T
Xq @10,(cy —¢;) + (12) X,
X —@lwy(cic; — 1) + (12) + 202 w?s,s. x
%, = (@}cpois,olc0is)M ~1| 70 | =L ‘“‘f \ R I B (46)
v, |M | — @15, + w10,5, + (12) v,
U, w385, — @lw,8,e5 + (12) v,
X, —alwy(cie; — 1) + (12) + 20 0dsis;\ T /x,
X o} w,(c; —¢,y) + (12) x
%, = (@},002,00M Y 70 | =L s ) |, (47)
v, |M | — ©7618; + 0T w,5:¢, + (12) v,
v, 035, — 0 w,5, + (12) Uy
Xa 0w, + (12) T Ix,
x — ot + wlwies, + (12) x
%, = (05,0 e 0iswic)M 1| ° =L ! 32S1 2 e *1, (48)
v, |M | w1w,(c; —¢;) + (12) v,
U @1518; — @iwy(eie, — 1) + (12))  \v,
and, upon inserting this into (18), the classical action
A g = (1/2|M|){(a)f —3) [(@1€15; — @,516,) (v + v3) — 2(wys5, — w2sl)vbva]
—20,0,[ (@07 + @3) (1€ — 1) — 20,100,585, ] (U, X, — VX, ) + 20,0,(0? — w3)(c; — ;) (VpXx, — V,X,)
+ @,0,(0] — @3 ) (@,8,¢, — @2015,) (X5 +x3) — 20,0,(07 — 3) (0,5, — @252)XpX, } . (49)

In the absence of external currents, this can be inserted into Eq. (39) giving the desired probability distribution. Before we go
on to calculating the full j50 contributions, it is useful to first study a few properties of the j = O result.

IV. THE PARTITION FUNCTION AT j=0 and forming the trace
The quantum statistical partition function of the j =0 w «
system is obtained by setting x, = x, =x, x, =v, =v, in zZ =f dx f dv(xvr, |xvr,) . (52)
which case the classical action becomes - -
A 5 = ax® + bv?, (50) This yields
with Z=Fp) -
a=(1/|M ) (0} — ) (@,(c, — 1)s, — wy(c, — 1)sy), ab
b= (1/|M|) (&} — 0})w,0, =F(B) M1
X(@y(c; — 1)sy — @,(c; — 1)s,), (51) \/(a)% _05)2(01‘02("1— D, —1)
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1 1
2 Je,— (e, = 1)
_ 1 1
" 2sinh(w,8/2) 2sinh(w,8/2)
The result factorizes into the partition functions of the two
harmonic oscillators contained in the system. This could

also have been obtained directly from (4) by summing over
all periodic paths, which would have given

1
m=0,1:!2,i4 [(€QZ + €0?) (€92, + €w3) ]
_ 1 1

2 sinh(w,B/2) 2sinh(w,8/2)

(53)

Z=

(54)

In this product, the integer m runs through all even
numbers, positive as well as negative, since periodic paths
have the Fourier expansion

x(r) = L ("%, +cc.),
B m=0%x2+4

(33)

with x,, = x* ,,.

V. LIMITING CASES

Let us check our result (39) at j =0 by looking at a
couple of limiting cases that have been solved before. Taking
o, =0, o, = @, the Hamiltonian (9) reduces to that of a
harmonic oscillator in the variable » with an external linear
potential ipv. The integral over £ x in (11) forces p(7) to be

a constant (via the canonical term exp §* d7 ipx in the inte-

grand) and the path integral (11) can be written as the Four-
ier transform

dp e — ip(xp — Xg)

VT [U,7,)
aoZﬂ' (bbl P

-]
(xbvbTb 'xavaTa) = J-

(56)
of the following probability distribution:

(0T V270, EJ- Dv(r)

b 2 2
Xexp[ ~f dfr(%+%-v2 +ipv)] .
° (57)

This path integral is well known. It is obtained by a simple
shift of the standard oscillator expression'®

b \ 2
(V7 |V, 7,) = J- .@v(r)exp[ — f dr(%z + _a;_ vz)]

, 1) { 1)
= — =P\ —
27 sinh wff 2 sinh wf

X [cosh wB(v; +v2) — 2v,,va]] ,

(58)

with s=sinh @f, c=cosh wf, namely,
(vbTb |vaTa )p

[

@ 2 2
expy — —|[c(vy +v;) — 20,0,
27rs p[ 2s[ (v +v2) b ]
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2
—ip =L, 4v,) -2 @—2c‘ﬂy(w>
Ay

s 20 )
whereupon (56) becomes

(xb UpTs Ixa U Tq )
@ 1 w

"\ 2 28 J1os

Xexp[ ——%[c(vi +v2) — 20,0, ]

o 1
28 1-p

2
[xb_xa_gp(vb +va)] ]’ (60)

with

p=2 c—1 _ tanh(wpf /2)
wfs (wB/2)

Taking the trace of (60) with respect to the velocity variable,
the distribution acquires the simple form

1
2 sinh(wfB/2)

x 1 o~ @B =)t

V278 /w

The prefactor 1/[2 sinh(wf /2) ] accounts for the partition
function of the harmonic oscillator associated with the vari-
able v. Apart from that, expression (62) shows the standard
mean-square end-to-end distance of a random chain, namely
((x, — x,)?) =B /w.Ithas the same linear behavior in B as
in the absence of the stiffness term 2.

It is easy to verify that our general expression (39) with
(40) and (49) reduces to (60) for w, = 0. Indeed, then

M | >wo,[0fs —2(c — 1)] = vw,0Bs(1 —p)

(61)

(‘xb Ty Ixa Ta ) =

(62)

and
1
2Bs(1 —p)
X{(@fec —s) (v} +v2) — 2(wB — 5)v,0,
—2w(c — 1) (Vyx, — VX, — VX, +V,X;)
+ w’s(x, —x,)%}, (63)

giving the correct exponent as well as the fluctuation factor
in (60).

If we also let @ -0, then 1 — p— L»°B * and the action
reduces to the simple expression

A a5 (1/28) (v, —v,)* + (6/8)
X [X%5 — X, — (B/2) (0, +v.)]7, (64)
which could have been found directly from the classical orbit
X —X, + 0,7+ X,7° + X357 (65)

after adjusting the parameters x,, x; to the initial and final
values

X3 = — (2/B%)[xy —x, — (B/2) (v, +,)],
X, = (3/8) (%, —x,)
+ (1728) (v, —v,) — (3/2B) (v, +v,) -
The transition probability becomes

Mel,sf -

(66)
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(X0, Ty | X0, 7,) = (3/mB2)e ™ o, (67)

Another useful limit is that of w,—»w,=w. Setting
0, = o + €, w, = @ — €, the determinant becomes

|M | —4€*(s* — °B?) . (68)
Inserting the limit
¢; =c(l £ eftanh(wp)) + (€/2)B* + - - -,
i (69)

sy =5(1 + eB coth(wB)) + (2/2)B% + - - -,
2

and using coth(wB) — tanh(wf) = (1/sc) we find the clas-
sical action

4]

gy = S_Z:Tzﬂ—z{(sc —af) (V] +02)

—2(s — coff)v, v,

— 0(s* + @*B?) (VX —V,X,)

+ 20s(vyx, —U,X,) + @?(sc + wf) (x2 +12)
—20°(s + coP)vyx, }, (70)

and hence
2

1 @ —
(X, 0,7 |X,0,7,) = — ——e bt |

T ,’;'2 _ (ozﬂ 2
In the limit @ — 0, this reduces again to (67) with (64), as it
should.

(71)

V. THE SOURCE TERMS

The source appears in (18) and the last term in (20).
First we calculate (18):

'ﬂcl,source = —f decl(T)j(T) ’ (72)

where x,, (7) is given by (8) with 4, B, C, and D expressed in
terms of x, v, x, v, via the matrix M ~! of Eq. (42). Hence
coshw,(7—7,)
1 sinh @,(7 —7,)

X, (7) =M‘ cosh (7 —7,) (73)
sinh w,(r —7,)

In the ordinary harmonic oscillator, the usual way of
giving the classical solution is more symmetricalin 7, and 7,
Xy = (1/sinh wpf) (x, sinh w(7 —7,)

+ x, sinhw(r, —7)). (74)

It displays directly the interpolation between x, and x, . We
can also bring (73) to such a form, which, however, is now
much more involved. By expanding x_, into the four solu-
tions
fo(1) =wysinho, (1 —7,) —w, sinhw,(7r —7,),
fo(1) =0, sinh (7, — 7) — @, sinhw,(7, —7),
8,(7) =coshw,(7 — 7,) —coshw,(7—1,),
8 (1) =coshw,(r, — 1) —coshw,(7, —7), (75)

which have the boundary properties
falr) =0, fi(r,)=0,
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fo(r) =0, fi(7,)=0,
ga(Ta)zoi gl’a(Tb)=07
gb(Tb)zo’ gl,;(Tb)=09

itis straightforward to form the linear combination, with the
correct initial and final values

xq(r)= —(I/IM))
X{[xb (018, — @25,) — v, (¢, —02)]fa (1)

(76)

+ [X.@18 — @55,) —v,(c; —¢3) ] [ (7)
— [xp@,@,(c; — €2) — vy (@25, — @,5,) 18. (1)
— [x.0,0,(c; — ;)
— U, (0,5 — @15,) ]85, (7) } . an
This may be more useful than (73), for some purposes.
Let us now turn to the fluctuation part of the external

source term in (39). Notice that it is sufficient to calculate
the odd and even sums

sinv,, (r—r,)sinv,, (7' — 1,)

) = . (B 7 @) 1 aD)
& (r.r) =_2_ sinv,, (r—7,)sinv,, (' —7,)
B m=-%5is (Q% + 0?)(Q%, + 0?)
(78)
Then
G(r,r') =G, (1) + G.(1,7) (79)

and the functions 4, (7), h, (') are simply found from the
derivatives [compare (37a) ]

hy(r) = lim 2 G, (rr') .
e 771, OT e

(80)
In the sums (78) we can replace 02, by 12, due to their fast
convergence, and write

G,(r,7) = [1/(@} — o) (G2 (r,7) — G(r,7")), (81)
G, (r,7) = [1/(02 — o) | (G2 (') — G2(r,r")), (82)

where

sinv,, (r—7,)sinv,, (7' —71,)

(VZ, + &%)

sinv,, (r, — r)sinv,, (7' —7,)
(v, + &%)

(83)

are the odd and even frequency parts of the correlation func-
tion of the ordinary harmonic oscillator. They, in turn, are
simply obtained from the standard boson and fermion corre-
lation functions

1 —iv,,T 1
Gy (1) =— R . E—
? m=0,%£2,+4,. Vf,, + w?
1 coshaw[r— (8/2)]
=— , 1€(0,8), 84
20 sinh(wf /2) 0.5 (84)
1 iv, T 1
G (1) =— e —
F B m’—':t;:tl:t‘t 1’2,,,+a)2
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1 sinhw[r— (B8/2)]
20 cosh(wf /2)

, 7€(0,8).

(85)

For 7 = 0 these coincide with the sums appearing in Egs.
(30) and (31), as they should.

Notice that the right-hand side is valid only for 7€(0,3).
Outside this interval, the functions have to be continued pe-
riodically or antiperiodically for G, or G,. An explicit repre-
sentation which shows this property is obtained by rewriting

o “ dv _, 1
Gp(7r) = f —e M —— (86)
B 1:2_“, — o 2T V2+(02
i © dv _; ; 1
G ) = _eftv(7'+lﬁ)eml , 87)
r(7) ,=z_°° Cw 2T Vv + @? (

where the sums over all integer numbers / squeeze the v inte-
grals into the appropriate sums (84) and (85). Performing
the integrals over v gives

GB (T) =—ZIZZ(9(T+IB)€_”(T+Iﬁ)

+ 07— B+ ),
(88)

Ge (1) === S (= )(O(r + IBe ==+
20 97

+ 6(1 — IB)e” " T 1By,
(89)

For 7€(0,8), the sums split into / =0,1,2,... and /= — 1,
— 2, — 3,... and can be performed to yield the results (84)
and (85). For 7€(f3,23), however, these have to be replaced
by '
1 coshw[r—(38/2)]

20 sinh(wf /2) (90)

[re(B2B) 1.

1 sinho[r—(38/2)] (91)
2w cosh(wpB /2)

When forming the appropriate combinations of these corre-
lation functions in (83) and (84 ), we have to distinguish the

cases T+ 7' <7, + Ty, T+ T >7, + 7. In the first case we
find

GB (r)=

GF(T) =

Gorr) = —
2w sinh(wpB /2)
X sinh a)(r _ Dt )sinha)(r’ ),
for r>7'e(r,,7m,), T+7T <, +7, (92)
Go(r,r) = 1
2w cosh(wf /2)

X cosh co(T - %)sinh o(r' —1,).(93)

In the second case

GJ(rr) = - !
2w sinh(wB /2)
Xsinh @ (7, — 7)sinh w(r’ _Ta ;Tb) ,
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for r>7'e(7,,7,), T+7>7,+7,, (94)

1

GJ(rr)= —
20 cosh(wf /2)

X sinh @(7, — 7)cosh w(f’ — —7:'5—:—;&) . (95)

As a check we add the even and odd results and find
G®(r,r') = (w sinh wB) !

Xsinh w(7, — 7)sinhw (7' —7,), 7>7,

(96)
in either case, which is the correct correlation function
G(r,1")

= (6x(7)6x(7")) | osein
2 sinv,, (r—7,)sinv,, (' —71,)
B E m=12,. an + »?
appearing in the path integral of the ordinary harmonic os-

cillator.!! Inserting (94)—(97) into ( 82) we find the odd and
even parts of the correlation function G(r,7'):

(97)

?;e (r,7') = — ! ( sinh w,(r - Tb—+—TL)
(0 — o) \250151
Xsinhw, (7' —71,) — (12)) )
for r>7r'e(r,,m), T+ 7 <7, + 7, (98)
G,(r,7) = ! ( cosh wl(r It )
(w5 — a)f) \2“)15'1
Xsinh @, (7' —7,) — (12)) )
and
8* (r,7') = I ( sinh w,(7, — 7)
¢ w3 —w? \Za)lsl
Xsinhwl(f' _ “ZL T") - (12)) :
for 7>7'e(ry,7,), THT>T,+7, (99
@,, (r,7') = — 1 ( sinh w,(1, — 7)

o3 —w? \2(0101

‘Ta+7'b) )
—(12)].
5 (12)

Adding up the even and odd parts we find, according to
formula (79),

X cosh wl(f’ —

> I —l—sinhml(r,, —T)

~ ']
G(r,7) = -
w] —w; LS,

Xsinh o, (7' —7,) — (12)] (100)

in either case. This is the first part of the correlation function
(6x(1)6x(7')) in Eq. (35).

Since we have treated the even and odd parts separately,
it is now easy to find other pieces 4, (7), A, (7') from the
limits (80)
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1 1
h =
(7 @ — w? [2 sinh(w,8/2)
Xsinh(w,(r L ;“ Te )) - (12)] ,
1 1
hy(r) = — [
™ @} —w? |1 2 cosh(w,8/2)

Xcosh(a;l(r — TL;T—")) — (12)] .

(101)
J

(8x(7)ox(7)) = G(1,7) = ——
w0y — @18,

1

As a cross check, we may form

lim i h 5 (n,

1. OT
which gives D,, D,, as it should [compare with (37b) and
a3Dn].

Combining (103) and (104) and using D,, D, we ob-
tain the complete correlation function of the fluctuations
[recall (35)]:

——1—2{(—1—- sinh @, (7, — 7)sinh 0, (7' —7,) — (12))
@3

1 1
ty (@, coth(@,8/2) — (12))\ sinh(w,8/2)
fa +T”)— 12 )

> (12)

1
><(sinh(co,,[i'/Z)
1

sinh wl(r’ —

sinhw,(r _ T ;:Tb ) — (12))

1
e tanh(w,8/2) — (12))\cosh(w,8/2)

—(12) )t.
. (12)

1
><(cosh(a),B/Z)

As a final check we verify once more that this Green’s
function vanishes at the end points together with its time
derivatives. This completes the calculation of the probability
distribution (x,v,7,|x,v,7,). The result is Eq. (39) with
the prefactor (40), the classical surface term (49), the clas-
sical source term (72) with x, () givenin (73) or (77), and
the fluctuation part of the source term given by the correla-
tion function (102).

VII. LIMITING FORMS OF SOURCE TERMS

For completeness, let us perform the limits w,—0,
@,-0, , -0, and w, -, on the source terms. For w, =0,
o, = o the classical solution (77) reduces to

1

Xy = — ————
Bw(l —p)
XH(x,, —%Bv,,)(sinh o(r—1,) —o(r—1,))
+ (x,, —%Bva)(sinh (1, —7) —w(r, — T))]
— [(x,, ﬁﬁw —v—b)(l - w—ﬂ)(cosh o(r—1,) —1)
2 w s
(om0
2 @ K}
X(coshw(r, —7) — 1)” . (103)
Ifalso w -0,
(r—1,)°
X = — 12{(xb —%Ub)—ws——— (ba)
(r—1,)?
- (x,, —%vb)—%[;Z—+ (ba)] . (104)
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cosh ml(r’ —

T"+T”)_ 12)
5 (12)

cosh 0)1(7' —

(102)

&n the limit w, — w, = 2€-0, the functions (75) tend
towards

Sfa(T)=2€lw(r —7,) coshw(r — 7,) —sinhw(r —17,)),

8,(7)-2e(r —71,) sinhw(r—1,),

with analogous limits for f, (7), g, (), and the classical
solutions become

Xcosh(7 —7,) —sinh (7 —7,)) — (ab)
- xb(a)ﬁs + v—b(s - wﬁf))co(f —-7,)
@ s

Xsinhw(r—71,) + (ab)}. (105)

The fluctuation part of the source contribution has the fol-
lowing limits: for w, -0, v, = w,

a(7',T') = ——13—[—1— sinh (7, — 7)sinh w (7' —7,)
w s
_(Tb—T)(T-Ta)]; (106)
B
for w2—+0, a)l—>0’
67y~ = xtr =D = 1,)
X[(ry =124+ (7' —7,)*=B%]; (107)

forw,—w, =w,

a(T,T') *—!—[(1 + wﬂg)sinh o(r, —7)sinhw(r’ —71,)
2w°s s
—sinh (7, — T (7' —7,)coshw(r’ —7,)
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— (7, —7)cosh w(7, — 7)sinh w(7' — Tq )] H
(108)

with the latter reducing properly to (107) in the limit @ — 0.
The functions 4, (7), 4, () become, for w, -0, w, = w,

h, (1) =i(Sinhw(T—— (r,+7,)/2) 7—(7, +7',,)/2)

e w? ZSmh(a)B/z) Q)ﬂ ,

(109)

T ¥ L i B ATE N RS
D 2 cosh(wp /2) 2

for @,—0, w,-0,

he(T) =é(7_ Ta +Tb)[(7___ Ta +Tb)2_lﬂ2] ,

2 2 4
(111)
l Ta + 7-b z 1
k(1) = ———[( - ) —— 2]; 112
( 27 5 2 B (112)
and for w, -, = o,
ho(r) = ——
4w? sinh(wfB /2)
X (co(‘r _ Tt )cosh co(*r - m)
2 2
—ﬂcoth%sinhw(r—— Ta +Tb>), (113)
2 2 2
1
h (1) = —
4 cosh(wf /2)
X(co( _ Lt )sinh co(r— Ta +Tb)
2 2
~ﬂmnhﬁcoshw(r—T—"JLTL)); (114)
2 2 2
and the quantities D, , D,,, for w,—0, v, = ,
1 (coﬂ wf )
D, =—(22 coth®2 _ 1),
BT\ 2 co 5 (115)
D0=B;2—a£tanh—a£; (116)
for w,-0, w, -0,
D,=4B, (117)
D,=}pB; (118)
and for w,—@, = w,
D, =E_(coth(co/?/Z) _ 1 )’ (119)
8 wf /2 sinh?(wfB /2)
B (tanh(wli’ /2) 1 )
D, =2 + )
8 wf /2 cosh?(wfB /2) (120)

Combining these &, h, and D as required by (35) we obtain
the limiting terms of the correlation function G(,7').

VIll. SECOND QUANTIZATION

Frequently one s not interested in studying the behavior
of a single fluctuating-line-like object but wants to consider
grand-canonical ensembles of these. It is then convenient to
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introduce a single fluctuating field whose Feyman diagrams
are capable of representing all the different individual line
contributions. For the usual random chain with a Lagran-
gian (D /2a)x* in D dimensions, it is well known how to
achieve this goal. For open chains of a given length L the
appropriate field is ¥ (x,7) and has the action'?

o =f drfdbx{wwr — WY+ YH(—9,)9},

(121)

where H(p) = p?/(2D /a) is the Hamiltonian and y is the
chemical potential of a chain element. For loops of any
length L, with a distribution e ~ ™%, the fields ¢(x) depend
only on the spatial variable x and the action is of the Klein—-
Gordon type

4 =jd”x @(X)H( —id,) + mI)p(x)

=~ [a2x1Rpwf + mip 1.
In the present case where the Lagrangian contains a second
time derivative, a second quantization can be achieved by
introducing, for open chains of a given length L, a field
¥(x,v,7) which depends on position, velocity, and time with
an action

L
.:z[=f drfd”xfd”x
(4]

X{y* (@, —w+ ¢y H(—id,x,—id,,v,7)},
(123)

(122)

where H( p,x,p,,v,7) is a Hamiltonian of the type (9) in D
dimensions. For closed chains of any length one has, similar-
ly, a field ¢(x,v) and an action

o = % f dPx d®v (x,v)(H(p,X,p,,V,7) + m?)p(x,v) .

IX. CONCLUSION

We have calculated the exact amplitude for fluctuating
orbits x(7) governed by the general second-gradient La-
grangian (2). The results is given by Eq. (39) with the fluc-
tuation prefactor (40), the classical action (49), the classi-
cal source action (72) and (77), and the fluctuation part of
the source given by (102).
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