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PARTICLE DISTRIBUTION FROM EFFECTIVE CLASSICAL POTENTIAL
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We show that the method of effective classical partition functions can be extended to find an approximation to the temperature
dependent particle distributions of quantum systems which are quite accurate, even at low temperature.

Recently [ 1], an efficient method has been developed to replace the partition function of a quantum system
at inverse temperature f=1/T
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by an approximate effective classical partition function
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which approaches Z very closely from below (i.e. F, > F), even at zero temperature, The approximate eftective

classical potential W, (x,) is calculated from V'(x) by the following rules:
(1) Form the smeared-out potential
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with
2 = 1 _ [BLR(x)/2] cth[B2(x)/2] -1
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where 27 (x,) is a variational parameter.
(2) Form

(4)

sh[f€2(xy)/2]

ﬂQ(xo)/Z )+VGI(X°)—%Q2(xO)az(x0). (5)

Wilx)=p"" log(

(3) Determine 22%(x,) by minimizing W,(x,), which gives
0%(x5) =02 V,2(x0)/10x3 =20V ,2(X0)/da’ . (6)

This result was derived by starting out from a trial partition function
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Z = j,ﬁxexp( Jdr{zx (1) +32°(x0)[X(1) —X]° })eﬁLn(,\'o), 7)

where xo=8"" [4 d7 x(7) is the time average of the path x( 7). By expanding x( 1) into its Fourier components
x(t)=xo+ Y (x,e“7 +c.c.),
n=1

with Matsubara frequencies w,=2n#/f, and using the measure
dxre dxlm
Jone [ S5 0 e
2nf a1 J m/Bw;

we integrated out all #> 0 components in Z; and found

_J de ﬂQ(XO)/z e—/fl_|(.\'o) (9)
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Then we determined L, (x,) using Peierl’s inequality:

(8)

B
z>2, exp(f ar <{V(x(r>)—%QZ(xmx(r)—xo]z—Ll(xo)}>1), (10)

where ¢ ), is the expectation with respect to the integrand of the partition function Z. This gave
Ly(X0) = Vyzxn(Xo) — 32%(X0)a* (Xo) (11)

with a?(x,) of eq. (5), which amounts to the above stated rules.

In ref. [1] we have applied this method to the potentials V(x) = * §x?+ 1gx* and shown that, even for very
strong anharmonicity, the approximate free energy F, differs from the exact F by at most a few percent, down
to zero temperature. The reason is that F, at zero temperature tends to the expectation value of the energy in
an optimal gaussian wavefunction and this is known to be a reasonable approximation to the true ground state
energy whenever the potential is smoothly curved around its minimum.

The purpose of this note is to extend the method in such a way that it gives us an approximation also to the
particle distribution functions of quantum systems

8
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where x, is the initial =final position of the particle’s periodic paths. The approximation to p(x,) is provided
by the particle density p, (x,) associated with the trial partition function Z,. In order to obtain it we insert into
the path integral for Z, a -function enforcing that x, =x(0) =x,+ >, (x,+c.c.) and have

Y]
pr(x)=27" J 9xexp(— fdf {%X"+%92(XO)[X(T)—Xo]2}>C “Aho)

X f % exp[a(xa—xo— éjl (x,ﬁc.c.))il . (13)

Performing now the x,, n> 0, integrals yields
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Fig. 1. The particle density p,(x,) as compared with the exact Fig. 2. The same plot as in fig. |, but for the double-well potential
density p(x,) (calculated from the Schrodinger wavefunctions) V(x)= —$x?+ jgx* at the coupling strength g= 0.4, Our approx-
and the classical one p,(x,), for the anharmonic oscillator poten- imation becomes bad for # = 5 for reasons explained in the text.

tial ¥(x) =1x?+ tgx* with g=40.
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This is a super-position of gaussians of varying widths with the distribution given by the effective classical
Boltzmann factor e #"'“ It has the proper normalization [*_ dx,p,(x,)=1. At high temperatures,
a’-15p-0, W,(x)—-V(x), and p,(x,) tends to the classical limit

pi(Xa) 7%1(%)525‘6*”""“- (15)

At low temperatures, the gaussians cluster mostly around the minima of W, (x,).

A comparison with the exact distribution p(x,) of the anharmonic oscillator and the double-well potential is
shown in figs. 1 and 2, respectively, for two representative coupling strengths. At high temperatures, the agree-
ment is excellent for all g. At low temperatures, the distribution of the anharmonic oscillator is slightly exagger-
ated at the origin, since the approximation W, (xy) squeezes an optimal gaussian wave packet into the potential
V(x)=4ix?+ Lgx® For the double-well potential, the agreement is worst if g lies near g=0.4. The deterioration
sets in at around 2 5 (see fig. 2) due to the eventual centering of the optimal gaussian wave packets in eq.
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(20) at the origin (compare fig. 3 of ref. [1]). For large g, this is acceptable and the agreement is much better
than for g=0.4. For very small g<0.4, when the central barrier is very high, the agreement is again very good
since there the optimal gaussians accumulate at the two minima + X, # 0 and reproduces the proper double
peak in the particle distribution at low temperature.
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