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PATH INTEGRAL FOR COULOMB SYSTEM WITH MAGNETIC CHARGES
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We calculate the path integral for the lagrangian L =imi?® + ex*d —eé/r — v?/2mr?, where A4, = g€, ; }x3/r(x1 + x3) is
the vector potential of a magnetic monopole, e its charge, and e the charge of the particle in Ol'blt In addition, we allow for
an arbitrary centrifugal barrier 1/r% potential. After the replacement ee — ee + gg, eg — eg — ge, the results apply to
dyonium, the bound state between two electrically and magnetically charged particles.

It is always fun to see old friends in a new dress, especially if this reveals new insights. For this reason,
the recalculation of the Green function of the Coulomb problem by different methods [1] has been a
popular exercise ever since Schwinger’s original solution [2]. Recently, path integration has become a
favorite technique of solving once again well-known problems. For the Coulomb case, this was done some
years ago [3,4] *! and repeated with various modifications [5-7] #2~.

In this note we want to generalize our method [3,4] to the case of an electric charge e in orbit around a
dyon with charge ¢ and magnetic charge g ¥*. In order to make the Dirac string invisible, g and e fulfil
the quantization condition

ge = g = half-integer. (1)

For the sake of being general, we also add an arbitrary 1/r* potential. We shall calculate the amplitude

r 2mr

(xoty | Xuta) = [@7x(1) exp{f dt(zmx voied— Y 2)] (2)

f@.)C(I) oo \/Zquc/m "= f 00 \/2'rr1£/m

via path integration. The vector potential A associated with the magnetic charge g 1s given 1n the abstract.

! Supported in part by Deutsche Forschungsgemeinschaft under grant no. Kl 256 and UCSD/DOE contract DEAT-03-81ER40029.
2 On sabbatical leave from Institut fur Theorie der Elementarteilchen, Freie Universitat Berlin, Arnimallee 14, 1000 Berlin 33,
Germany.

#1 Ref. [4] is the detailed version of ref. [3] including also the two-dimensional case.

#2 The authors of ref. {5] are more explicit than refs. [3,4] and write down all expressions in the time sliced form but get the correct
- result only after using a wrong jacobian d(x, 5);/d(u); = 24r (see the last lme before their eq. (13)). The correct jacobian is
24r2. In fact, construction of the variable F,* must be taken to be equal to r2 ; rather than the average between r, and ri1-

#3 In ref [7] the correct result emerges after usmg his wrong formula (7), since thls author did not consider the fact that 7 is equal
to r>_, by construction. See also ref. [8].

#4 The problem has a long history, see ref. [9]. For recent discussions including spin, see ref. [10].
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Going to the square-root variables
x;=—z6z, r=2z", ' (3)
where o, are the Pauli matrices and

2y =u, —iuy = Vrsin 18 exp| — Li( a + )], z,= —uy+iuy = —yrcos 30 exp| — ti(a — ¢)],

(4)

each point x, = (r cos 8, r sin 6 cos ¢, r sin 8§ sin @) has as many square roots in the four-dimensional u,
space as the angle a has values between 0 and 4m. The degeneracy of this mappmg 1s removed by
introducing

(1) an auxiliary fourth variable x, extending the klnetlc term to X2=x2+ %2 and using the path
integral in four-dimensional space

N+1

) exp(ie ;l (xn "-’Cn——l')z/f2 : (5)

> d(x4)N+1 ﬁ (‘/2 d4x/n
= mi€E/ M

The integral over the final (X4)n+1=(x4)y, ensures that the extension does not alter the result (see refs.

[3,4)).
(2) Mapping intervals dx, into intervals du, by

. y
dx,=24(a) du,, (6)
where

U, U, U U,

— U — U U U

2 )| 4 3

A (u)=| _
M u] uz u3 _'""u4

has the inverse (1/u*)A" and the determinant u* = r2. Then

w2 f..282 - 2 2 2 . : 2 2 . :
X, =4du"u”, Xyx,—X3x —4[(u2+u3)(u4u1 — Uity ) +(”1 +”4)(“3“2*”2”3)]3

Xi+ x2= 4(u§ + u%)(uf‘ + uf,).

In the new variables, the lagrangian reads

1§ 4m 1 1
L{u, , u =——u4u2-- U Uy — U U, )+ ULl UL U
_.(.u. p,) r[2 qu1+u4(41 184 u2+u3(32 23))
X(uf+uﬁ—u§—u§)+e§— > |- (7)
2mu
In terms of u = M and the angles 8, ¢, a, it looks as follows:

1 4m > , g \. v

L(u, 8, ¢, a)=— Yt Imub |02+ P+ &P -2 a— Z]pcos b +ee———). (8)
r| 2" mu 2mu’ |
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We now perform the change from ¢ to the path dependent pseudo-time s via the idem factor

rb'/;mdsfg—fexp[ —iE(t, —t,)| exp(if:ds Er(s)) =1, (9)

and arrive at the Duru—Kleinert type representation of the Fourler transformed amplitude (2) (see ref. {4}
eqgs. (100)-(106)):

<xb‘xa>E=f4

T o0 -
A dab_/; ds e ““(uys|u0)

=L4“dab[}mds e-ieﬁ:f[f@“u(s) exp(i_/:ds %M{uf‘+ %u2[9r2+¢)f2 + o2

, (10)

where M =4m and the prime denotes d/ds. We now observe that the lagrangian L(u, u’) in this
amplitude has a Legendre transform

—2(a/ —4g/Mu?) ¢’ cos 8| — 40 /2 Mu® + Eu’ })

H=%;—L
= (1/2M){ p2 + (4/u%)| p3 + (1/5in6)( p2 + (pu+9)" + 2( pu+ 9) p,, cos 6) |}
+(4/2Mu?)|q* — q(p, + q) +v*]. (11)

In the canonical version of the path integral (10)

24 s
f94x 2:” f::«tp(%if0 ds (puu’+p99’+pq}qa’+pﬂa’ —H)),

we can therefore easily change the variable of integration p, into p, + g, thus picking up a phase factor
exp[ —ig(a; — «;)]. Then, since H does not contain a, the a integration can be performed forcing the new
p. to be equal to g. This makes it possible to replace the 1/u* potential in (11) by

(4/2 Mu*)(v?— q?%).

Keeping this in mind, the path integral in the large brackets of eq. (10), may be rewritten

(uys |u,0) = exp[iq(db —a,)| f@“u exp(ij:ds (%Muf — iMw’u; — a2/2Mu2)), (12)
where

W=y —-2E/M =,/ —E/2m (13)
and

a’=4(v*—q*).

This is the amplitude of a four-dimensional harmonic oscillator with an extra 1/ u? potential.
For v = g this 1s immediately solved in closed form [11] with the result

W
2 sIn WS

(u,s|u,0) = (V2misin ws )~ * exp(i [(uﬁ +u?) cos ws — 2uy * "a] ) (14)
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Going from the variable s to o = e¢™'*®*, and doing the «, integration this gives immediately the desired
amplitude

. Mp, 6" V20 1+o0
(xp|x,)p= —1 o _/(;d (1_0)2 q(ngl \/xb X, T Iyl )exp( pﬁl_a(rb+ra))a (15)

where

Py=V—-2mE =/—ME/2 = Mw, v=-ee/2w.

For v+# g, a little more work is necessary. Here we first have to do the angular integrals. In a
D-dimensional generalization of the method of ref. [12), this gives the partial wave expansion

E (ups | u 0):2 m (i) Yy (825, (16)

<"b3|"ao> T
(”b“ )D/2

where Y, are the D-dimensional spherical harmonics (with m denoting all degenerate quantum numbers).
They satisfy the completeness relations

H 1 20+D=2 1o i &
ZYlm(ub) (H )_ SD D — 2 CID/Z l(ub.ua)! (17)
!

where C/* are the Gegenbauer polynomials #°

MNa+r)T(I+a—r)

C/*(cos #) = iﬂ __n!(n —r)T*(a)

cos(2r — 1) (18)

and S, =2w"7%2/T'(D/2) is the surface of a D sphere. The partial wave amplitudes are given by the radial
path integral

]
2 Mu

(ubs\u30>,=./;m.@u exp{%j:[(%MgZ_ %Mw2u2) 2([1+%(D—2)]2—-}+a2) } (19)

This can be done [7] giving

Mwyju, u,
(ups |u0),=— }/zb exp[%iMw ctg ws(ug + ui)] Ly (p_2y 2 (Muyu,/isin ws), (20)
i SIn‘“ws

where / is chosen such as to make the natural centrifugal barrier associated with this value of
angular-momentum include our extra a*(2Mu*) potential, i.e.

[1+(D-2)/2)?=[1+(D-2)/2]" +4(v* - q°). (21)
We now perform the integral over [da, exp[ig(a, — a,)]. Since
ity = E (g 50 + rry) cos{(a, — @, — 8)/2],

where B is an angle depending only on 8, ¢ (see footnote on p 420 of ref. [4]), we can integrate (18)
directly

4 igay, ((D/2—-1) 1 _ F(D/2—1+l+q/2)F(D/2—1—q/2)
A da, e'9*C| (cos Ja, ) =4m (I+a/D(=a/DT(D/2~1) .

(22)

#5 Notice that in four dimensions, C{V(cos &) =X!_, cos(2r — 1)® = sin[(/ + 1)#]/sin J.
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Since D 1s really equal to 4, the right-hand side 1s equal to 4« for /=¢q, g+ 2, g + 4. Hence, the integral
over a, 1n (16) gives

1 Mw
(“b“a) 1 SIN WS

4
| Tday (uys 8,0y =
0

(23)

Mu,u, )

Xexp{%iMw ctg[ws(uf,+u§)]} Z 2(l-lhl)I‘?“(isin WS

l=q.q+2,...

As a check, we set v =g such that / =/ and we can use the identity

2(/+ 1)1, 1 (u) :h[fz(”) — If+2(”)]

to perform the sum

Y 2(/+ 1)1, (u) = hl (u). (24)

I=q,q+2,...

This agrees with a direct integration of (14) over «j,.
It 1s now obvious how the final result (15) changes when allowing for the additional centrifugal barrier
a®/2Mu*: We simply have to to use eq. (24) backwards and replace

(=% T (14 Dh(h), (25)

I=q,q+2,g+4,...

such that

' 1
(Xp | X, )= 1m - ' Z (H‘ 1)
i Vz \/xb-xa+rbra I=qg,q+2,...

(26)

—p—1/2
Xfldoo m l1+o )
0

1 —_ I:’+l 2P01 _ 0\/xb‘x3+ rbra) exp( _POI _.O.(rb_l-ra)

The Founer transform of this is the desired amplitude for the charged particle moving in the field of a
dyon.

It goes without saying that the result can trivially be extended to the case that the particle in orbit has
itself a magnetic charge g; in this case the final result merely requires the replacement ee — ee + gg,

eg — eg — ge.

The author thanks Dr. Eric D’Hoker for telling him about the supersymmetric aspects of the dyon
system. He also thanks Dr. S. Ami for discussions and Professor N. Kroll and Professor J. Kuti for their
kind hospitality at UCSD. |
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