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We extend Widom’s Ising-like model of microemulsions on a simple cubic lattice by a new
term which accounts for the Gaussian curvature energy of the oil-water interfaces. The new
term distinguishes between different topologies of the interfaces and plays an important role in
determining the microstructure of microemulsions on a scale larger or comparable to the
persistence length provided that the microemulsion is dominated at all by curvature energies.
We also speculate on its possible role for the breakdown of curvature energies in

microemulsions.

Recently, Widom'? has proposed a model of microe-
mulsions which consists of an Ising model with additional
next-nearest neighbor and three-spin interactions. These in-
teractions are introduced in order to describe the curvature
energies of the surfactant film. Since the work of de Gennes
and others,” these are believed to be responsible for the oc-
curence of three-phase equilibria and the low interfacial ten-
sions in the model. The purpose of this letter is to draw atten-
tion to the fact that Widom’s energy is a lattice version of
only the mean curvature energies. Since a surface possesses,
in general, a further material constant* which determines the
cost of energy due to Gaussian curvature, we derive the Ising
model form for this energy. In addition, we comment on its
role in microemulsions.

Widom employs a simple cubic lattice whose links carry
oil (AA), water (BB), and amphiphile (AB) molecules.
The A and B end points of the molecules meet at the sites and
the condition is that each site is occupied either by six A or
six B end points (see Fig. 1). Hence the variables o0 = 4 1,
o = — 1allow us to parametrize all configurations, just as in
an Ising model. In order to account for three-phase equili-
bria and low interfacial tensions, Widom introduces an extra
energy k(1 — A) if the A end points of fwo amphiphile mole-
cules come together and an energy «(1 + 4) if the B end
points come together. This assignment gives an extra energy
to curved amphiphile sheets [Figs. 2(a), 2(b) ]. It also does
so to flat, amphiphile bilayers [Fig. 2(c)], a shortcoming of

the assignment which must eventually be corrected.

As the curvature is concentrated at the lattice edges of
the surfactant film, the effect upon continuous amphiphilic
layers is nontrivial to evaluate and requires the inclusion of
surface fluctuations. A representative example is a sheet
which forms a staircase of elementary lattice steps. Averaged
over a few lattice spacings, this is flat, but the unrenorma-
lized lattice Hamiltonian renders an energy proportional to
its area. The analogous problem for line ensembles is well
understood where the entropy leads to isotropy between
staircase-like diagonal lines and those along the coordinate

directions. One has to solve the difficult problem of a contin-

uum limit of lattice curvature. First, perturbative insights in
this direction have only recently become available.>®
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It is therefore not possible to compare Widom’s curva-
ture energies directly with the quadratic continuum form
which was introduced by Helfrich in the form*

F=J-dA {%(c, +C, — Cp)? +7<clc2] =Fy, +Fg. (1)

Here, dA is the invariant area element, K,k are elastic moduli,
(C, + C,)/2 is the mean, C,C, the Gaussian, and C, the
spontaneous curvature. In Widom’s curvature energy the
parameter A sets a bias towards oil in water or water in oil
curvatures just as C, does in the continuum form [Eq. (1)],
implying that his energy corresponds to the first term in Eq.
(1). Indeed, we shall now show that the second term in Eq.
(2) involving the Gaussian curvature is not contained in
Widom’s model: By the Gauss-Bonnet theorem, the integral
of C,C, over a closed surface is a topological quantity which
only depends on the genus g ( = number of handles) of the
surface (g = O for a sphere, g = 1 for a torus, etc.), namely,

FG=;JC1C2dA=%;(1—g). (2)

Consider two lattice surfaces shown in Figs. 3(a) and 3(b)
homeomorphic to a sphere and Fig. 3(c) homeomorphic to
a torus. For the first two surfaces, F; should have the same
energy whereas it should vanish for the toroidal surface. In
Widom’s lattice model, the energy depends on the number of
edges on the surfaces and is 36« (1 — A) for the cube of Fig.
3(a) and 32«(1 — A) + 4x(1 =A4) for both the distorted
curbe and the torus of Figs. 3(b), and 3(¢) (assuming the
surfaces to contain oil surrounded by water). This demon-
strates that Widom’s curvature energy shows no genus de-

a) b)

FIG. 1. (a) 4 end points, (b) B end points of molecules meeting at a lattice
site (Fig. 1 of Ref. 2).
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a) b)

FIG. 2. AB molecules and associated surfactant film (dashed line). Film
bent in opposite senses in (a), (b), three pairs of interacting amphiles in a
bilayer (c) (Figs. 2 and 4 of Ref. 2).

pendence and cannot account for the Gaussian term in Eq.
(1). Now, from several works,” it is known that the interplay
of mean and Gaussian curvature is relevant for determining
the microstructure of the microemulsion. Equilibrium con-
figurations of closed surfaces will tend to “sphere up”, form
saddle-like configurations, or produce handles called
“pores” or “necks” depending on the relative magnitudes of
x and k. As the Gaussian curvature energy controls the ge-
nus of single surfaces as well as the number of surfaces in an
ensemble we expect « to play an important role in deciding
whether the microstructure of the ensemble is layered, bi-
continuous (sponge-like) or consists of spheres cylinders, or
disks of oil or water immersed in the other liquid.

We are thus motivated to turn to the main purpose of
this letter and formulate the Gaussian curvature energy on
the simple cubic lattice in terms of Ising variables. Qur prob-
lem is simplified by the topological nature of this energy.
There is no need to know the local curvature C,C, on the
lattice. We only have to count the number of surfaces and
their geni for each configuration. In contrast with the mean
curvature energy, there will be no uncertainty as to the prop-
er continuum limit of our lattice energy due to the purely
topological nature of the Gaussian curvature.

For a single closed surface it is well known how to calcu-
late the genus on a simple cubic lattice®: Let a connected
surface consist of n, plaquettes, 7, distinct links, and n, dis-
tinct sites. Then the genus of the surface is'!

g=1—4(n, —n +ny+b). 3)
Here, b is the number of singular lines plus boundary lines of
the surface. As the Ising model admits only closed surfaces,
no boundaries occur and b reduces to the number of singular
lines. In the Ising model on a simple cubic lattice only one
type of singular line element can occur: if four plaquettes
carrying amphiphilic molecules meet at one link (Fig. 4).
We can now use rule (3) and count the plaquettes, links, and
sites on the surfaces of Fig. 3. This gives g = 0 for Figs. 3(a)

(b) ©

FIG. 3. Two spherical surfaces (a) and (b) and a torus (c) each having 36
bents contributing to Widom’s curvature energy.

(a)

FIG. 4. Four plaquettes carrying amphi-
philic molecules which meet at one link
to form a singular line. Also shown are
the corresponding AB molecules in Wi-
dom’s graphical scheme.

and 3(b) and g = 1 for Fig. 3(c), which are the correct geni
of these surfaces. The Gaussian curvature energy for an en-
semble of surfaces is therefore

Fo=4mc Y (1—g)

= 277'1?2(n2 —n;+ny+b)
= 2mk(N, — N; + N, + B) 4

with N, =2 n;,B=2 b being the total number of pla-
quettes, links, sites, and singular lines on the surfaces of the
ensemble configuration.

The counting of the number of sites and of singular lines
needs some additional specifications: The definition [Eq.
(3)] holds for a single“connected” surface. Two surfaces
having contact along links, as shown in Fig. 5(a), have tobe
counted as a single connected surface. Two surfaces which
merely touch at a site as in Fig. S(b) are counted as discon-
nected. Accordingly, the genus of the surface in Fig. 5(a)
may be calculated using Eq. (3) with each plaquette, link,
and site being counted once and b = 1 for the singular line,
resulting in g = — 1. For the two disconnected surfaces in
Fig. 5(b), on the other hand, the genus has to be calculated
for each surface separately via Eq. (3). As the common site
is contained in each of the two surfaces, it also has to be
included in the calculation of each genus and is thus effec-
tively counted twice in the ensemble formula [ Eq. (4) ]. This
results in g = O for each of the surfaces of Fig. 5(b). So Figs.
5(a) and 5(b) both contribute 87« to the Gaussian curva-
ture energy [ Eq. (4) ] which agrees with the intuitive picture
that in a microemulsion both configurations represent two
spherical (g = 0) surfaces.'? There is yet another rule for the
counting of singular lines in the energy [Eq. (4)]: Singular
lines which form closed loops are no longer considered as
singular: (i.e., they do not contribute to either the sum b or
B). This is demonstrated using Fig. 6, which shows a torus
capped with an elementary cube, thus forming a connected

FIG. 5. A surface which is con-
nected because its two parts
share common links (a) and
two disconnected surfaces
sharing only a common site

(b).
(a (b)
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‘ FIG. 6. A torus capped with a cube (which has
been lifted up for graphical clearness).

surface with a closed singular line. If we were to count this
line in Eq. (3) we would obtain 1 — g = 3/2, whereas intu-
itively we expect that the 1 — g =0 of the torus and the
l1-g=1 of the cube should add to give the total
2(1 — g) = 1. This is achieved if the closed singular line is
considered as nonsingular.

After having specified the counting rules let us now turn
to specifying the Gaussian curvature energy in terms of Ising
variables o = + 1. For this purpose it is convenient to split
Eq. (4) into two contributions:

Fs=F§ +Fg. (5)
The regular part F§ is defined as
F§ =2mx(Ny — N, + N). (6)

With N X being the sum of all distinct sites on the surfaces,
each site contributing 1. The remainder is the excess Gaus-
sian curvature

FE& =2mk(N§ + B) (7N

which includes the number B of open singular lines and the
excess number N § of sites which contribute more than the 1
already accounted for in Eq. (6). [For example Fig. 5(b)
contributes 1 to N &.]

The regular part [Eq. (6)] is easily expressed in terms
of Ising variables in the following way: The number N, of
occupied plaquettes is simply the number N, 5 of amphiphile
“molecules” in Widom’s notation,

1—o(x)o(x+e;)
N,=Y 5 ,

X,

(8a)

where ¢ = (X,,X,,X;) are the lattice sites and i = 1,2,3 labels
the basic lattice vectors e;: (1,0,0), (0,1,0), (0,0,1). Similar-
ily, the number N, of links on the amphiphilic surface is
calculated by considering the four 4,B carrying sites which
encircle this link (see Fig. 4): An amphiphile sheet passes
through the link if the four sites have different 4,B assign-
ments and the link is surface-free if all the sites are either of 4
type or of B type:

Nﬁ=2[1_1+0u)k+dX+q)l+ﬂx+q)

Xi%j 2 2 2
) l+o(x+e +8g) _ l—o(x)l —o(x+e)
2 2 2
l—o(x+e +e¢) l—a(x—i—e,)}. (8b)
2 2

The number N { of distinct sites (each counted once) on the
amphiphile surface may be calculated from the 4,8 content
of the eight sites on the original lattice which surround the
dual site on the surface (see Fig. 7 for an example). Only if
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FIG. 7. A site (marked ® ) of the amphiphile sheet and the surrounding
eight sites of the original lattice carrying 4(O) and B (@) (a). The spin
configurations of the lower and upper four sites as defined in Eq. (9) and as
used in Tables I and IL.

all eight sites are of 4 type or if all are of B type no surface
passes through the central site. In all other cases N Rgetsa
contribution 1:

1+o0, 8 1—0,,]
2 II 2 )

v=1

8
Ng:Z[l—H (8¢)

x v=1

where we introduced the shorthand notation
o,=0(x),0,=0(x+e),0;=0(X+¢e +e,),
0, =0(X+6€),05s=0(x+e),05=0(x+e;+e),

o, =0(X+e+e +e),0z3=0(X+e+e). 9

We shall now consider the excess part F & [Eq. (7) ] whichis
much more involved.

We note that Eq. (7) may be rewritten as a sum of con-
tributions coming purely from the sites on the amphiphile
surface. As far as the counting of the excess site number N §
is concerned, this is obvious. With respect to the singular
line-number B the statement is true for the following reason:
As the contributing singular lines must be open, each such
line has two end points which are located at the surface sites,
each such site contributing 1/2 to B. To calculate the energy
at each site we take the eight surrounding sites [Eq. (9)] on
the original lattice and write the excess part as

E_n~ e, b )
F& =27« Ex: (no + >
with nZ and b /2 being the contributions at the dual site
x + 1(e, + e, + e;). At each site the configuration is speci-
fied by the values of the eight o, = + 1(v=1,...,8). The
resulting 2% = 256 configurations give rise to 14 different
surface structures. Table I records the spin values of the low-
er and upper four spins as defined in Fig. 7(b). It also shows
a graphic representation of the resulting surface and gives
the associated nZ and b as well as the degeneracy number of
the configuration. Configuration 1 contains no surface and
hence contributes nothing to F. Configurations 2-7 have a
single surface passing through the site and contribute to the
regular part of F; only. Configuration 8 shows two discon-
nected surfaces as discussed in the context of Fig. 5(b). The
site has to be counted twice, so the excess number nf is 1.
Configurations 9, 10, 11 have an odd number of singular
lines running into the central site. Hence a singular line ter-
minates at this site and b = 1. The number n§ vanishes for
these as well as for all other remaining surfaces, as they are

(10)
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TABLE 1. The 14 possible surface configurations at a site. See the text for
the definition of the entries.

S 3
3 -4
g:z ZZ; surface nongé
+]+ +
VR | s @ |o|o] 2
+|+
2| B | B () |o|o|
3| | B olo| 6
+
A LI lolo|es
5 +|+ -
. ~ éﬁ 0|0|48
6|1 | Bl % olo| 8
]
7| . 0|0|24
Zl
CHIE d ,.," 1|0|a8
o| B | B 01|16
“L
10| = 2 57 |o|1|48
+ - [
1 A | e A ol1]16
12 B | S Ax 0|o|24
-+ - K
13 53 | B2 : o|o| 6
+ -
14) - " o|o| 2

all connected at links. The configurations 12, 13, 14 finally
have an even number of singular lines and so & = O for these
graphs.

To facilitate the construction of the energy F & in terms
of Ising variables, we present, in Table I1, the spin configura-
tions of the upper and lower four spins [see Eq. (9) and Fig.

7(b)]. To the recorded configurations one has to add those
with upper and lower spins interchanged and to the resulting
expression one has to add the exchange o, » — 0, to obtain
the complete set of configurations contributing the values n§
and b recorded in Table L.

We do not bother to write down the full expression in
terms of Ising spins. The reason is that we expect the regular
part of the Gaussian curvature energy to be sufficient to de-
scribe the overall influence of the topological curvature:
From the definition of the regular and excess parts [ Eqs. (6)
and (7)1, it is obvious that the excess part vanishes for strict-
ly self-avoiding surface configurations (no contact at links
nor at sites). Consequently, nZ and b vanish for the configu-
rations 1-7 in Table 1. Since the only microemulsions of
practical importance are those which have a low content of
ampbhiphiles the restriction to self-avoiding surfaces should
be a good approximation. Moreover, Table I shows that the
excess term also vanishes for the configurations 12, 13, 14
which contain surface contacts. As a result only 96 out of the
possible 256 configurations at each site contribute to the ex-
cess energy. These configurations will occur sparsely as long
as the amphiphile concentration is not too large.

Therefore we should be allowed to proceed with the re-
gular part of the Gaussian energy only. Replacing o(x) by
its expectation value o in a simple mean field approximation
in Eq. (8) leads to the Gaussian curvature energy per site:

F, F%

——

NN

= 2,7,'({1_702 M T L g -+ const.
32 6 32 128
(11

Not much information can be gained from this mean field
expression except that the sign of « helps to stabilize the
occurence of three-phase regions (x> 0) or tends to destabi-
lize it (x <0). In fact, the influence of the Gaussian curva-
ture energy cannot be judged by mean field methods as it
concerns the detailed microstructure of the system such as
the occurence of bicontinuous surfaces (sponge-like struc-
tures of high genus) the immersion of simple spherical, rod,
or disk-like droplets of one component in the other, or the
formation of flat bilayers. None of these structures may be
obtained by a simple mean field analysis but they require the
investigation of more complicated ground states such as the
lamellar states investigated by Widom.?

Here, we shall not attempt such an investigation but end
this letter by a general more speculative discussion of the
possible role of the Gaussian curvature energy for microe-
mulsions: Let us first investigate what would happen, if
Gaussian curvature energies were the only relevant ones:
Recall from the discussion between Egs. (4) and (5) that
each surface contributes 47x(1 — g) to the energy as if it
were completely disconnected from all other surfaces. As-
suming that the parameter x can take any value between
— 10" and + 10~' erg, the Boltzmann factor of each
surface at room temperature,

exp{ — 4mx(1—g)}, (12)
can vary between e ~2°C' = and ¢%°"! ~#). We now observe
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TABLE II. The configurations contributing to surfaces 8, 9, 10, 11 of Table I.

Surface 8 of Table I

8{7 + +[-

516 hl il +

4|3 -+ +1+

12 +i+ -+

Surface 9 of Table I

8|7 -+ +|- + + + + |~

5/6 +|- -+ + + + +

413 +|+ +|+ -+ + |- +|+ -{+

112 +|+ +|+ +|+ +[+ -1+ + |+

Surface 10 of Table I

8|7 +|- +| - -+ -+ - - - - + + +{+ + |+ +| -
5/6 +| - +{- -+ -1+ ++ +|+ - +|+ -1+ +| - +|+
413 -+ + |+ +|+ +| - +|+ +|+ + + +—l— +
112 +|+ -+ +{~- +]|+ +|- -1+ +|+ + —+| -
Surface 11 of Table I

8|7 +| - +| - +|+ +| -

5|6 -+ il -+ +

413 -+ +|+ -+ -1+

112 +| + +| - +| - +] -

that the same type of weight per (self-avoiding) surface is
obtained in U(n) lattice gauge theories (n~2'~#) if we
identify n with n = e~ '°t0 €'°. In this wide range, the phases
change drastically. For small n, the configurations consist
mainly of a single surface with high genus, for large n there
are many surfaces of low genus (planar or spherical). In
contrast to gauge theories, the total area in a microemulsion
is essentially fixed experimentally by the concentration of
the surfactant. For k> 0 the Boltzmann factors [Eq. (12)]
suppress spherical surfaces of genus 0 and favor configura-
tions with high genus. They are not sensitive to the number
of surfaces over which the total available area is distributed.
It is then essentially the entropy of mixing which will bias the
system towards many surfaces with moderate geni or
towards a few high genus surfaces, reminiscent of the bicon-
tinuous phase proposed by Scriven.® For x <0 on the other
hand, spherical surfaces are the favored ones and energy is
released if the total available area is distributed over many
small spherical surfaces. The entropy of mixing plays a much
weaker role in this case and it is the short distance cutoff
which prevents the system from subdividing into more and
more spheres of ever smaller radius.

Consider now the effect of the mean curvature energy.
As k>0 the amphiphile sheets are stiff, on a scale of the

persistence length® £ ( = a few hundred angstroms). They
are flexible on scales much larger than &. If we assume « > ||
for the bare constants, then Widom’s curvature energy will
dominate at small scales. On larger scales, « is softened by
thermal fluctuations while k receives an additional positive
contribution, independent of its initial sign.” Suppose now

a) @

yd d

v

b)

FIG. 8. Elementary surface fluctuations which may cause a collapse of cur-
vature energy for k=« (a) and xk — x (b).
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the i_nitial Kk is positivg and of the same order as x, i.e.,
Ko > ko> 0. Then « and « can crossover on a scale which is of
the order of the persistence length. It is at this scale at which
the aforementioned effects of the Gaussian curvature energy
will take over and play an important role for the microstruc-
ture of microemulsions."

Let us end our letter with some speculation concerning a
possibly more dramatic effect of the Gaussian term. From
light scattering data it appears that the curvature energy in
microemulsions is much smaller than one might estimate for
a single amphiphilic layer using liquid crystal elastic con-
stants. Some fluctuation effects may be active, leading to a
collapse of curvature stiffness. The perturbative renormal-
ization of « cannot be carried into this regime. The interplay
of k and « terms, on the other hand, may explain this col-
lapse. If x and « are of the same order of magnitude (either
on Widom’s lattice scale or at some larger scale with a «
softened by perturbative effects), topological fluctuations
may become abundant. As a topological fluctuation costs
some units of «, it has to be such that a similar amount of
energy is saved by the corresponding change in the Gaussian
term. For x>0 this may be achieved by drilling holes into
bilayer sheets as visualized in Fig. 8(a). Such configurations
have been seen in lecithin layers.'® For k=~ — «, a similar

T. Hofséss and H. Kleinert: Ising model of microemulsions

balance may take place if small spherical surfaces are emit-
ted from a larger surface, as in Fig. 8(b).
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