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1. INTRODUCTION

There are a variety of physical systems that are characterized by:

1. The existence of long-range modes which dominate the thermodynamics at low
temperatures.

2. The existence of short-range linelike disturbances of order, called vortex or
defect lines, which are activated at higher temperatures and lead, uitimately, to
the destruction of the ordered state in one or more phase transitions.

In recent years, there has been a great deal of progress in developing a statistical
mechanics of such systems using only these two modes as elementary excitations. In
this development, two gauge structures have played an important role.

The first gauge structure emerges when formulating the simplest “harmonic
model” of vortices or defects with long-range interactions. The long-range modes are
described by some smooth displacement field u(x). Vortices or defect lines arise if u(x)
is @ multivalued field and can have jumps across surfaces. The boundaries of these
surfaces are the defect lines. The precise position of the surfaces is irrelevant. This
irrelevance manifests itself in the existence of a gauge invariance. The gauge field
involved will be called “plastic gauge field” or “defect gauge field.”

The second gauge structure is found when constructing a disorder field theory of
vortex or defect lines. The long-range modes of the system cause long-range interac-
tions between such lines. In order to include them into the disorder field theory, a local
coupling is needed. Such a local coupling emerges after rewriting the long-range modes
in terms of a gauge field, to be called “elastic gauge field” or “stress gauge field.” It
permits bringing the disorder field theory to the same form as the Ginzburg-Landau
theory of superconductivity, albeit with a different meaning of the field quantities.
Instead of order, the field describes the disorder of defect lines; and instead of
magnetism, the gauge potential accounts for the long-range elastic forces.

Historically, the need for developing a statistical mechanics of defects was first
recognized 30 years ago. In 1952, Shockley found that it would be useful to study the
phase transition of melting as a proliferation of closed dislocation lines.! Three years
later, Feynman made the same suggestion with respect to the superfluid transition and

“Supported in part by Deutsche Forschungsgemeinschaft under Grant K1 256 /10-1.
349



350 ANNALS NEW YORK ACADEMY OF SCIENCES

vortex lines.? As we understand it now, Feyman was right, Shockley’s proposal needs
some refinement. '

For superfluid transitions the vortex mechanism was clarified first in two dimen-
sions by Berenzinskii, Kosterlitz, and Thouless.? They showed that the breakdown of
quasi-long-range order was really due to the unbinding of vortex antivortex pairs. In
three dimensions, Feynman’s program was carried through by the author, who
developed a complex disorder field theory for the grand-canonical ensemble of vortex
lines.® The long-range forces between the lines were correctly included by means of a
local gauge field, the stress gauge field.

The plastic gauge fields are probably most useful as a starting point when setting
up a theory of defects with elastic forces. The field quantities appearing in it have the
most transparent physical interpretation. Functional integral techniques can be used to
bring the partition function to other equivalent forms. In particular, we can arrive
at the above-mentioned field theory of defect coupled to an elastic gauge field.

It is the purpose of this paper to exhibit the two-fold gauge theory of elasticity and
plasticity, following this approach, for two typical systems: superfluid ‘He and the
crystalline solid. In doing so we shall adopt a uniform language which helps in stressing
the structural parallels between the two different physical systems. Giving preference
to a “crystalline language,” we shall call the hydrodynamic energy of superflow
“elastic” or “stress” energy, and the vortex lines “defect lines.”

2. DEFECT GAUGE FIELDS IN SUPERFLUIDS

The superfluid is described by an order parameter, a phase exp (fu(x)) with an
angle u(x) called displacement. The gradient d,u(x) is the superfluid velocity to be
called distortion. At zero temperature, the hydrodynamic energy of the superfluid or
elastic energy is given by

1
E- f dx (8,u(x))> (1)

If the system is heated, vortex lines appear. A vortex line can be described by
introducing a Volterra cutting surface S over which the phase jumps by 2w, 1.e.,

(8iu"(x)) = 2w :(S) (2)

This singular distortion is called plastic distortion. We have put the derivative in
parentheses since (9;uP(x)) cannot be written as the derivative of a single-valued scalar
field. It has to be treated like a three-component vector field. Only a multivalued u(x)
can have such a derivative. The multivaluedness’ shows up when going around the
boundary of the surface S and forming the Burgers circuit integral

fﬂ dx.(d.uP(x)) fB duP(x) = 2 3)

We see that the vortex line is characterized by a vortex density which is singular along
the boundary line L of the surface S.

a(x) = €ije 3 (O uP(x) = 27 € 0 6(S) = 2w 5;(L) (4)

Notice that only the line L is a physical observable. The position of the surface has no
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relevance. It can be changed arbitrarily in space as long as the boundary L is kept fixed.
A shift from S to S’ produces a change in o;(x) as follows

(8iuP(x)) = 27 §;(S) — (Jiu"(x))' = 27 §;(S")
= 27 8,(S) + 27 (8:(S") — &(S))
= (0u"(x)) + dN(x) (5)
where
N(x) = — 27 8(V) (6)

and Vis the closed volume clement over which S has swept. Thus, changes in S amount
to local gauge transformations of (8,uP(x)). Under them, the curl ;(x) of (9;u7(x))
remains invariant. For this reason, the plastic disortion field will be called a defect
gauge field and the transformation (5) a defect gauge transformation.

The elastic energy of an ensemble of lines is given by the deviation of the total
distortion from the plastic one as

1
E, - [dx5 (Gu(x) - (0u(0))’ ™

Under a defect gauge transformation, the total displacement field u(x) changes by
u(x) — u(x) + N(x) (8)

Such a change is of no physical relevance since N is a multiple of 27 and only "™ is
observable.
In the presence of vortex lines, the superflow velocity is given by

vi(x) = du(x) — (duP(x)) )

This quantity is a defect gauge invariant. It is single valued and observable.
The grand-canonical ensemble of fluctuating vortex lines including their proper
long-range forces is described by the partition function

T o f Du(x) f D(d,u”(x)) (I)[(aiup)]e7(3/2)fd3x(6iu—(aiu“(x)))’ (10)
where the symbol D(8;#P(x)) implies a summation over all Volterra surfaces S. The
functional ®[(d,4")] has to be introduced in order to avoid an infinite overall factor,
due to the gauge degeneracy of the integrand. This amounts to fixing a particular way

of constructing the Volterra surface S for every L. A particularly simple choice would
be the transverse defect gauge

2[(0u7)] = 11 6 (0.027(x))) = 8[a,@u7)] (an
With it, d,x and (9,u4F) decouple and u(x) can directly be integrated to give

z-11 %ﬂdet (=82 [ D(3u?) 8[8,(3u)] e /0w (12)
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The factor v27 /8 contributes 4 to the specific heat, in accordance with Dulong-Petit’s
law.

In the fixed transverse gauge, the integral over (d;u") can easily be replaced by an
integral over the manifestly defect gauge invariant vortex density «;(x). In the
transverse gauge, it is related to (8,u”)* by

a;(x)* = 3 (8;uP) 8, (8;u®) — (B:(8uM))’
= 0y (3;u") 3, (9;uP)

such that Z becomes
z- H dct( 8%) [ Da(x) 8 [d05] e~ /DI Pral/ Pl (13)

where 1/(—9%) a;(x) = fd3'x’ U(x — x)a(x’) and U(x — x’) = 1/47R is the
Coulomb-Green’s function (R = (x — x')).

There is one immediate objection to this derivation: the transverse gauge (11)
cannot be realized for any shape of the Volterra surfaces. Only a gauge of the axial
type can, say,

(35uP) = 0

Fortunately, however, the mistake has no consequences in the derivation of (13) since
the difference between the two gauges becomes relevant only in the presence of
external volume forces.’

3. STRESS GAUGE FIELDS IN SUPERFLUIDS

Besides the defect gauge invariance, the superfluid harbors another gauge struc-
ture associated with the supercurrent.® It is revealed by rewriting the path integral (10)
in the canonical form

z- [ = [ Pu0 [ D@u@i@un] eI (14

which is obviously the same as (10) by a quadratic completion. Integrating out the u(x)
field produces a é-functional 6[d;b;] such that b;(x) forms closed field lines, just like a
magnetic field. Taking advantage of this analogy we can introduce a vector potential
a;(x) via

b(x) = (3 x a)(x) (15)
This relation displays invariance under stress gauge transformations
a;i(x) — ai(x) + SA(x) (16)

In terms of a the path integral (14) becomes

[a]

Zf\/_

Da; i o
=f\[2T66[aiai] fD(aiu Y[(0,uP)] e Sd’x(@xa).(3uP)
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A partial integration brings the defect factor to the form
Zla] = [ Doy(x)b[i0] e /¢ (18)

If we insert this into (17) and integrate out the a field we recover once more (13).
Inserting into (18) the explicit decomposition (4) of a; according to lines we can write

Z[a] = ; o~ /dxiaix) (19)
L

where 2, denotes the sum over all closed line configurations.

4. DISORDER FIELD THEORY OF SUPERFLUIDS

The properties of such a partition function can best be studied by transforming it to
a fluctuating complex disorder field theory

Zd [a] = f D@D¢+e_fd3[l/2[(a_ia)‘d2+(m2/2)|d2+(£/4)\vl4+...} (20)

That this is possible follows from the usual duality between fluctuating particle orbits
and fields.’ The orbits are now the vortex lines L.
Inserted into (17), the exponent becomes a field energy of the Ginzburg-Landau

type

1 1 , 5
TEﬂzﬂfdx(axa)

+fd3x1|(a_ia)¢|2+ﬂ2|¢|2+5|¢,|4+.,, (21)
2 2 4

The coupling g parameterizes the steric repulsion between vortex lines.

The mass term m* « (¢/T — S) becomes negative above a certain critical
temperature T, = ¢/S where the entropy S per line element exceeds the energy e per
temperature. There, (21) has a second-order phase transition and the field ¢ takes a
nonzero expectation | ¢ | = v —m?/g as a signal for the proliferation of vortex lines.
This explains the name disorder field. As a consequence, the vector potential acquires
a mass term Y | ¢ |?a®>. When added to 143 (8 x a)?, we see that in the normal state the
vector potential has a finite penetration depth £ = 1/ /8| ¢ | * This is the disorder
version of the Meissner effect in superconductivity.

It has been claimed that the second-order transition in a pure | ¢ |* theory becomes
first order when coupled to a gauge field.” Recently, the author showed that this is true
only below a certain tricritical ratio K, = \/g_/a ~ 0.7/ V2. For the vortices in *He, this
amounts to a very small steric repulsion between the lines.

Let us now follow the same lin¢ of approach and study the situation in a crystal.

S. DEFECT GAUGE FIELDS IN CRYSTALS

In crystals, the elastic energy can be expanded into gradients of the displacement
field 1;(x) as follows
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A
Ea= [@x (wid + 526 + P00 (22)
where
w; = (digy + 014) (x) 23)
1
w; = 5 €5k 9 1y (X) (24)

are the strain and rotation fields, respectively. We have omitted all higher gradients of
1;(x) which are inessential for our purpose, but included the lowest gradient of w; which
is essential for the discussion.

In the presence of defects, the energy is given by the differences between w;; and the
plastic strain uf = 1/2((8;2f) + (8; u})) and between d;w; and the rotational part of the
plastic distortion 0;1/2¢,(du}) plus an additional independent’® plastic contortion

¢f = (df):
Eq= fd3x u(uy — uf)® + é(u-- — uf)?
€ 18] 1 2 i n

) | 5
+ 2ul? (Giwj — 9, 3 6k (up) — (diw}’))

N

l 1
+ aiwj - g 5 Ejk!(aku;l')) - (aiwf)) (ajwi - aj 5 (i) — (ajw{’))” (29)

We have added another term e(diw; — 6; Y2 gy (Outf) — (dieh)) (B — 9; Y2 g
(3 uf) — (d;wf), which would be zero in the absence of defects but which can now be
present, since for multivalued fields, dwf = % €,9;(;uf) # 0. A dislocation line is
constructed by taking a Volterra cutting surface S and letting the plastic distortion
have a jump across it, i.e.,

(Fuf) = b;6,(S) (26)

where b, is the Burgers vector. The energy is invariant under the dislocation gauge
transformations’

(Quf) — (Bulf) = 6,(S") b
= 5(S) b + (5(5") — &(S)b;
= (0;uf) + ON;(x) (27)
with
Ni(x) = — 8(V)b;
when changing simultaneously
i (x) = #i(x) + Ni(x) (28)

These latter transformations reflect the multivaluedness of w;(x): the rest position
of an atom is undefined up to a multiple of a lattice vector b;.
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A disclination line is given by a jump in the rotation field
(diwf) = 6;(S)% (29)

The defect lines are the boundaries of the surfaces S and show up when forming the
curls

aij(x) = fikfak(aluf) =6,(L) bj (30)
®ij(x) = Giklak(a!wjp) = 5i(L)Qj (31)

They are called dislocation and disclination densities. It is useful to define a
combination of these, the total defect density

15(X) = €xi€jmnOxIm e, (32)
Writing®
i (X) = 60Uy + €@n)
= 6 (A7) + 0 (dwf) — (3y0f) (33)
and applying ¢, we find the relation
15(X) = 6 + 2 (6maOntn + (ij)) + Y2 €00ty (34)

It is usually postulated that there are no jumps in any higher derivatives. From this
it follows that

00, =0 (35)
which states that disclination lines are closed. Applying to (27) we find that
aiain = _enpq@pq (36)

This implies that whenever dislocation lines contain sources, these are due to an
antisymmetric part of the disclination density.

The energy (25) is furthermore invariant under disclination gauge transforma-
tions’

(3if) — (dif) + (8(S") — 6:(S)) @ = (9uf) + O, M,
(Ful) — (dul) — ey M, 37
with
M, = — 8(V)Q
The partition function of dislocations and disclinations under stress reads
z - [ pux) [ D@utx) @ [3uf) [ D) [ D(@wp(x)) & (617]
x exp (~BE4 (38)

We can now choose a gauge in which (d;uf) = (duf) = (aitsl?) (via M) and in
which d;uf = 0 (via N;(x)). Then the Boltzmann factor is
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exp — B [ dxlu(u + @ + 5 (4 + 28 Bud) + @uD)

+ 2u12[(6iwj)2 — 2w;d;(dwf) + (aiw}’)"
+ €(— 20;0,(jef) + (8] (Bwl))]} (39)

Forgetting for a moment the /* terms, we can perform the u; integrals and find?
3

Z = H ST det (= (A + 20)8%) "2 det (—pud?) !

. [Dauralaut] [ D@wh)@0ul]

. exp —f f d3xd?x {w(8,uP)6P (x — x)

- %Gii’ (x — x")3(3u¥(x) 3 (Buf (x))} (40)

where G(q) = (1/ug*) [(8; — 94;/9%) + #/(A + 2u) 4:9;/q"] is the elastic Green’s
function. In the transverse gauge we can calculate

N = azﬁij UEI — azuﬁ — 31(9114’,
1
uf = — Y (m5 — (8 — 8:8,/8%)m) (41)

such that the exponential becomes

1
exp — Bu [ d (ny(x) m,(X) 7 mX) 53 mx)) (42)

where v = A/(2A + 2pu).
Inserting only the o part of (34) leads to the well-known Blin 1/R law for the
energy between dislocation lines

1 1
cexXp — 6 fd3xa’[](X) ( 62 (51] 6_‘[ 3 6[] 6”') + : eljk El'j'k’akak’/a4 ai’j'(x) (43)
In addition, (42) specifies also the long-range forces of the form —R/8w between
disclination lines [via (34), (31)], as well as the mixed interactions of the form log R
between dislocations and disclinations.
bFor unisotropic materials the exponential would read

8 a4
€xp — 5 Z (caer — 4y CiuCiper Gir(Q)) [ (Mt — Bumee) + %ﬂ"
q

[ 1 9 qr
X a“j (mer — Opmee) + _qT T

where Gii'(q) is the inverse of Ciji'j' qj qu
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Including the /% term without e modifies the exponent in (42) to
-8 [ &xd’x {(u@ub)? + 2uP(00)) 80 (x — X))
— h Gip(x — xX) (NGBl + 2pl%€1,0,9;(3;f))
X (A0;0,uf + 2ulzeifkn3n6j(6‘jwﬁ))} (44)

where G(q) - 1/(vg*(1+1°¢%)) 35 — 4i//q°) + 1/(2u + Mg’ ¢ig¢/q’. In momentum
space this becomes

ol o

1 1
| GD) * — e | 8,8l |* + o | 9;0,(9;F) |2]

+ 2ul?

2ul? 1 1
+ ‘I“Tzqz[? | ai(ajw})) |2 - ;l‘z | ajai(ajwlp) |2“ (45)

We now use

D 10,12 =2 (6| (3h) |* — | 8;(8eh) |7]

(‘5ijaz — c')iaj)aij + eki,c'ik@i, =2 alaj(a,w}’) (46)
to write the second term as
2 1 2 1 1 2 2

-8 Z 2ul ? | 0; |* + Zaz | (0;0° — 9,0) vy + 65190y | (47)

q

and the third term as

1 1

-8 g 2ul TR | (8;0* — 8:0;) Bty |2 (48)

Including finally the ¢ terms there is one further contribution

€ 1
— B2 2wl [?(l 01"~ 519817 - I%IZ)
q

Er 1 5 1 )
1—+ 12q2?|6j®ij| -+-Zl-2-|3a” (")aa +e,lk6 Bfkl
€
+ WI (625ij — 8,0} oy + €9y |?

€

- 49
+1+12q2q2( “49)

(aij32 — alaj)akaj’f[ Eipqepq + C.C.)

This Boltzmann factor gives the elastic energy for all defects, dislocations, and
disclinations due to second gradient elasticity.

“For more details, see Reference 23.
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The path integral over the defect fields (9,;%}), (d.w]) may now be replaced by
integrals over the defect densities a;;, ©;;.

f Doy (x)6[0icv;; + €3O} f DB;(x)6[9,0,] (50)

Notice also that classical linear elasticity is degenerate in that it cannot distinguish
the different characters of the defects. It only depends on the combination #;(x) of «;
and ©; which picks only three independent combinations of the 12 independent
components of ay, ©;. The higher gradient terms of elasticity lift this degeneracy. In
writing down (47), (49) we have chosen to rewrite the longitudinal parts d,«;; of «; as
dlsclmatlons — €Oy The remaining energy depends only on the divergenceless part of
o, off which satisfies d,af = 0. Hence we can write the ¢ = o part of Z as

3

Z -, /2; det (— (A + 2)8%) "2 det (—ud*(1 — 1%9%))™"
fDa (9 )fz)@ua(a 0;)

exp

1 5 v ,
—Bﬂgqlg(l??ij' + 1 _vlnul )

11
—28ul* > — l 0; 1> + = = 18;0% + 0,0, |
q (4 2q

1
—26NZZ 12 2 2 akagiiz] (51)

with a similar replacement of «; by ag in the e term (49).

6. STRESS GAUGE FIELDS IN CRYSTALS

As in superfluid, there exists a second gauge structure associated with the stress
energy. In order to see this we bring the partition function (38) to the canonical form

Z = Hf\[ml_}[f 11:[I./.\/g—l—‘ﬁj‘Du(x)‘/-le(x)

[p@unel@un] [D@eh@(@]

v 1
f @ [4u( et 52) guf 0170 + 527””)]

+ ifdax(fij(aiuj - fijkwk - (alujp))

exp

+i fdxr;(0 - (aiwf))] (52)
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where 6, = 1/(1 — ¢), 6, = —ed,. We have found it convenient to treat w;, as an
independent integration variable whose connection with ' e d;u, is enforced by the
integration over the antisymmetric part of of ¢;. The energy depends only on the
symmetric part of).

Integrating out u; and w; gives the conservation laws

aiTij
o7 i = — € Ow (53)

which are the stress analogues of the defect conservation laws (35) and (36). We can
now introduce stress gauge fields A4;, and A; which guarantee (53), by writing

05 = fikrakAij
Tij = GaOchy + 05Ay — Aj (34)
These decompositions are invariant under the stress gauge transformations?
Ay — Ay + 91\,
hlj - h!j - fljkAk (55)
and
hyy = g + 0§ (56)

which are the analogues of (27), (37). In terms of A4 and 4;;, the coupling to the defects
in (51) reads

CXP[ —i Z Alj[flkak(aiu})) + 51j(3nwg) — (0wf)] —i Z hy [flkiak(aiw}))]] (87)

This coupling is invariant under the defect gauge transformations (27), (37). In
particular, (37) can be used to make (d;u4) symmetric. Remembering (33) and (31), we
recognize the sources as a; and @, and the coupling to the ensemble of defect lines is
given by

cxXp !—t fdsx (A[jafj + hlj@lj)l = €Xp l—le fdx, Alj — IQJ fdx, hl_'] (58)

Integrating out the A, hj; fields in (52) leads again to a Boltzmann factor (45), (49) with
a sum over defect densities (50).

7. DISORDER FIELD THEORY OF CRYSTALS

The analogy with (18), (19) allows us to introduce disorder fields, one associated
with every fundamental Burgers’ vector b; and one with every Frank vector .. If we

Notice that with w; being treated as an independent variable, the energy in (52) is invariant
under the defect gauge transformations

(aiujp) i (alu}’) + aiN', uj— u; + Ni

the last replacement following from the é-functional produced by fda}.
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neglect the coupling between dislocation and disclination lines in (50), we can write
directly

z - [pA; [Dh@(A)3[hy] [ Doy Das* DeoDey’*

1 , i, 8ov
exp _ZE|(61_lbjAIj)‘Pblz'f'_iEl‘Pblz‘f‘%l‘f’blzl‘f’b'|2+“'

x,b
1 ‘ , M ,  Eag 2 2
“ZE'(aI_lehlj)‘Pnl +7|<Pn| +T|‘Pn'| lea |2+ .1 (59)
xQ

Together with the elastic part of the partition function, this would represent the
disorder field theory of defect lines in a crystal under stress. The coupling (36) makes
things somewhat more complicated and the reader is referred to Reference 5 for a
detailed discussion (see also Reference 11).

8. THE MELTING TRANSITION

As an application of the disorder field theory (59) involving the elastic gauge fields,
consider the melting transition. Above a certain temperature, the dislocation lines
proliferate, | ¢, | becomes nonzero and screens the stress fields in a disorder version of
the Meissner effect.!” Stress can no longer penetrate into the disordered state. This
weakens the forces between disclination lines from — R to 1 /R. If the core energy of the
disclination lines comes mostly from the elastic stress field around the line, an increase
in | ¢, | is sufficient to weaken the energy such as to also make the disclination lines
proliferate. If we minimize the disclination energy, plot the minimum as a function of
| ¢ |, and add this function to the dislocation potential, the result is a curve with a
protrusion towards the | ¢, | axis. This changes the second-order transition of the pure
¢, theory into a first-order transition."!

This backfeeding mechanism is the novel feature when going from the vortex-
induced phase transition to the defect-induced one. The superfluid has only one type of
defect line which can only proliferate in a second-order transition. The crystal, on the
other hand, has two types of lines with different long-range interactions, one with 1/R
and the other with R. The proliferation of one type screens the forces of the other and
triggers also their proliferation.

For Monte Carlo studies of the system the original defect gauge theory (25) is more
suitable. It can easily be formulated on a lattice by changing integrals to sums and
letting the gauge fields (9;u]) be multiples of the lattice spacing a.

Taking / = o, for simplicity, one arrives at the periodic Gaussian model'®"*

7 = H J:: du,(x) Z D [ny]

{0}

exp — g[z u(V,u] + Vjui — 41rnij)2 + 2h Z (Viui — 2Trnii)2

x.if

By a Villain approximation, this can be substituted by another simpler model of the
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XY type, in which the periodic Gaussian is replaced by an exponential of a cosine."
This is simpler to simulate. At / = 0, the core energies of the disclination lines come
purely from linear elasticity and the transition is indeed of first order, in three!® as well
as in two dimensions.'® The latter result is in contradiction with theoretical consider-
ations by Halperin and Nelson.!” The flaw in their argument lies in an unphysical
choice of the core energies.'®

CONCLUSION

The two gauge structures seem to be a universal feature of all systems with
long-range modes and linelike defects. The methods presented here can be applied to a
variety of physical systems such as liquid crystals,"” magnetic superconductors,? pion -
condensates,” etc.

It is worth pointing out that, by introducing random quenched disorder into these
theories, it is possible to gain access to glassy systems.*

SUMMARY

We have stressed the relevance of two kinds of gauge fields in many body systems.
One is associated with long-range elastic forces, the other with vortex or defect lines
caused by plastic deformations. The elastic gauge field is indispensible for constructing
a disorder field theory of defects under stress (which is of the Ginzburg-Landau type).
The plastic gauge field is useful for finding an order field theory of stresses disturbed
by defects (which is of the XY model type).

As a particular technical result we use the plastic gauge invariance to calculate the
forces between crystalline defect lines in the presence of higher gradients in the elastic
energy.

REFERENCES AND NOTES

1. SHOCKLEY, W. 1952. In L’Etat Solid, Proc. Neuvieme-lousail de Physique, Brussels. R.
Stoops, Ed. Institute International de Physique. Solvay, Brussels.

2. FEYNMAN, R. P. 1955. In Progress in Low Temperature Physics, C. J. Gortes, Ed. 1.
North-Holland. Amsterdam, the Netherlands; Popov, V. N. 1973 Sov. Phys. J. Exp.
Theor. Phys. 37: 341.

3. BEREZINSKIL V. L. 1971. Sov. Phys. J. Exp. Theor. Phys. 32: 493; KOSTERLITZ, J. M. & D.
J. THOULESS. J. Phys. C6: 1181; 1978. Prog. Low Temp. Phys. 7B: 371; KOSTERLITZ, J.
M. 1974. J. Phys. C7: 1046.

KLEINERT, H. 1982. Phys. Lett. 93A: 82.

For more details see KLEINERT, H. 1986. Gauge Theory of Stresses and Defects. Gordon
and Breach. New York, N.Y.

6. The two gauge field structures were first pointed out in KLEINERT, H. 1983. Phys. Lett.

A97: 51. See also KLEINERT, H. 1982, Lett. Nuovo Cimento 35: 41.

7. HALPERIN, B, I, T. C. LUBENSKY. S. K. MA. 1974. Phys. Rev. Lett. 32: 292; HALPERIN,
B.I. & T. C. LUBENSKY. 1974. Solid State Commun. 14: 997.

KLEINERT, H. 1982. Lett. Nuovo Cimento 35: 405.

9. KRONER, E. 1981. Les Houches Lectures 1980. In The Physics of Defects. R. Balian et al.,

Eds. North-Holland. Amsterdam, the Netherlands. See also Mura, T. 1972. Arch.
Mech. 24: 499,

Nl

Q0



362

10.
11.
12.
13.
14,
15.
16.
17.

18.
19.
20.
21.

22,
23,

ANNALS NEW YORK ACADEMY OF SCIENCES

KLEINERT, H. 1983. Phys. Lett. 96A: 302,

KLEINERT, H. 1983. Phys. Lett. 95A: 493,

KLEINERT, H. 1983. Lett. Nuovo Cimento 34: 471,

KLEINERT, H. 1983. Lett. Nuovo Cimento 37: 425.

KLEINERT, H. 1982. Phys. Lett. 91A: 295.

Jacoss, L. & H. KLEINERT. 1984. J. Phys. A17: 361.

JANKE, W, & H. KLEINERT. 1984. Phys. Lett. 105A: 134.

NELSON, D. R. & B. 1. HALPERIN. 1979. Phys. Rev. B19: 2457; YOUNG, A. P. 1979. Phys.
Rev. B19: 1855; NELSON, D. R. 1982. Phys. Rev. B26: 269.

KLEINERT, H. 1983. Phys. Lett. 95A: 381.

KLEINERT, H. 1983. J. Phys. Paris 44: 353.

KLEINERT, H. 1982. Phys. Lett. 90A: 259.

KLEINERT, H. 1982. Lett. Nuovo Cimento 34: 103, and lectures presented at the 1983
Conference on High Energy Nuclear Physics at Lake Balaton, published by Budapest
University Press, J. Erd, Ed.

KLEINERT, H. 1984. Phys. Lett. A101: 224.

KLEINERT, H. 1985. Lett. Nuovo Cimento 43: 261,



