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The effective potential ( =Legendre transform of the generating functional) of a double-well potential is calculated via the
recently proposed method of effective classical potentials (= potential W(x,) whose Boltzmann factor exp { —f W(x,)] gives the
distribution of path averages xo=[/§dz x(1)]/8). The result is automatically convex and, down to very low temperatures, in
excellent agreement with what is obtained by solving numerically the Schrédinger equation.

Recently, it has been pointed out that a quantity
called the effective classical potential is useful in
studying quantum mechanical systems at finite tem-
peratures. If the partition function has the form

8
Z= J P2x(1) exp(— j d‘r[%fc2+V(x(t))]) , (D
0

the effective classical potential W(x,) is defined by
the path integral (1) at a fixed time average of the
paths x(1):

(1/{/2nB) exp [ - BW(xo)]
B
1
= J 2x(1) 6(x0— E l dr x(t))
8
X exp (— Jdr[%)&2+V(x(r))]) . (2)

In terms of W(Xx,), the partition function reduces to
a single integral

z— j\)‘%exp [—BW(x0)], (3)

which has the same form as the classical partition
function
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Zy= JWCXP[ BV(x)].

This is the reason for the above name for W{x;).
A simple extremal principle gives for W(x,) the
following approximation [1]:

W(xo) = Wi(xp)

s%log sh(B2(x,)/2)/[B2(x0)/2]

+ Va2 (X0) — 12%(x0)a” (o), (4)
where
a*(xo) = [1/BR%(xo) 1 382(x0) cthifR(xo) 11,

(3)

Volw = | s (- (12600

X V(x), (6)
and
Q2(x0) =02 V,2(x0)/0x3

=20V ,2(x)/da>. (7)

For the anharmonic oscillator and the double-well
potential, this approximation gave exellent free ener-
gies down to zero temperatures [ 1 ]. The mistake was
nowhere larger than a few percent. Also particle dis-
tributions were found in reasonable agreement with
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the exact ones [2,3]. In this note we would like to
use the same approximation to calculate the stan-
dard effective potential Vof quantum field theory.
Recall that V. (X) is defined via the generating
functional

Z[j} = exp{W[j1}
B
=J Dx exp (-— Jdr[%fcz + V{(x(1)) —jx]). (8)
0

The exponent W[/} generates all connected Green’s
functions. The derivative

SW(loj= X1 =X=<x) (9)

is the response of the system to the external source
j(z). In analogy with magnetic systems, the function
X[j] will be referred to as magnetization curve.

The effective potential is given by the Legendre
transform

Bl =W+ [ dr X (10)

evaluated at a constant external source j. Its derivative
BVl X)/0X=j(X) =] (11)

is the inverse of the functional (6) evaluated at con-
stant j.

Thus, if we succeed in finding the magnetization
curve X[j] for constant j, we can invert this function
and integrate it to obtain V (X), up to an irrelevant
constant of integration. The effective potential is
always a convex function of X, It is an old problem
in quantum field theory that perturbative approaches
to quantum systems with a non-convex potential
V(x), such as the double-well potential V(x)=
—$x*+1g x*, always fail to give a convex V(x). Our
approach has no problems in reaching this goal. The
generating functional W[j] at constant j, is simply
given by

Z[j1= exp{W[j1}

—_ dxo ]

_j g SXPL BT (x0) —iol}, (12)
and
XU1=Z'[j]

xf%ﬁ;xo exp{ — B[ W(xo) —jxo1} (13)
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Fig.1. The response curve X= (x> =X[/] for various constant
sources j calculated once from our approximation to the effective
classical potential W (x;) = W,(xq) (- — -) and once from the
crude approximation Wi{x;) = V(xy) (...). For $£0.1, these agree
with each other and with the exact curves ( ) obtained by
solving numerically the Schrédinger equation in an external field
Jj. Our approximation W,(x,) gives excellent agreement up to
B~ 10, which is quite a low temperature (7~ 1/10).

has necessarily a positive derivative dX/dj such
thatd?V, ( X)/3X? is positive and Vg convex.

In fig. 1 we have plotted the magnetization curve
(13) for g=0.4 at various temperatures. For = 10,
the exact magnetization curves (found by solving the
lowest 8 eigenvalues of the Schrédinger equation for
various j’s) have practically reached the zero-tem-
perature limit. We see that up to f= 10 our curves
are in excellent agreement with the exact ones. In the
opposite limit, for £#<0.1, the effective classical
potential W, (X;) becomes practically indistinguish-
able from the potential V(x,). This is seen by com-
paring our curves with those obtained by crudely
approximating W, (x,) = V(x,) in eq. (13).

If the inverse temperature § is increased much fur-
ther than #~ 10, our approximation deteriorates. The
reason for this can be seen in fig. 2, which shows the
effective classical potential W, (x,) for g=0.4. For
B <10, it has two minima, and up to this point the
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Fig.2. Our approximation W,(x,) to the effective classical par-
tition function W(x;) for the double-well potential
V(xy) = — $x3 + 1gx§ at various temperatures. Up to f = 10, the
approximation is excellent as witnessed by the agreement between
exact and approximate magnetization curves in fig. 1 and the
particle distributions shown in ref, [2].

326

PHYSICS LETTERS B

4 December 1986

magnetization curve is quite reliable. For large
£>10, however, the two minima flow together and
the original double-well in V{(x,) disappears com-
pletely. The single minimum at the origin reflects the
fact that the zero-temperature limit of the free energy
is equal to the expectation value of the hamiltonian
in a single gaussian wave packet and that for g=0.4
this packet has to be situated at the origin. This is
why the approximation becomes eventually bad. A
superposition of two gaussians would really be
needed. Thus the approximation can be used only up -
to S~ 10, 1.e. down to T2 1/10.

It goes without saying that the approximation is
superb for the anharmonic oscillator with positive
curvature at the origin, for all g and 8, down to zero
temperature.

The method is sufficiently promising to warrant an
application to field theories.

References

[1] H. Kleinert and R.P. Feyman, Phys. Rev. A, to be published.
[2] H. Kleinert, Berlin preprint (1986).
[3] W. Janke and H. Kleinert, Berlin preprint (1986).



