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We give an exact equation for the renormalization of the electric charge in the Villain version of
the U(1) lattice gauge theory. It involves a sum of monopole loops of increasing size plus their
long-range Biot-Savart-type interactions. We count and evaluate the contributions of these loops
explicitly up to tenth order. The resulting renormalized charge is in very good agreement with re-
cent Monte Carlo data except in the extreme vicinity of the critical point.

I. INTRODUCTION

The compact U(1) lattice gauge theory is a prototype
for understanding quark confinement. For small field
fluctuations it describes electromagnetic waves. For large
fluctuations, the energy is periodic in the field variables.
This gives rise to defects, which have the character of
magnetic monopoles with long-range Coulomb interac-
tions."? In the three dimensions the magnetic monopoles
are pointlike and undergo a magnetic version of Debye
screening. This leads to a permanent confinement of elec-
tric charges. In four dimensions, the magnetic mono-
poles form closed world lines to be called monopole
loops. As long as the stiffness parameter 8 of the elec-
tromagnetic field fluctuations is high, these loops are
small objects with dipole-dipole interactions. They are
unable to screen the forces between the magnetic mono-
poles and there exists no charge confinement.® If, howev-
er, the stiffness parameter B is decreased below a certain
critical value, then the configurational entropy. of the
monopole loops leads to their unlimited growth. The
dipole-dipole interaction is taken over by long-range
Biot-Savart interactions and the magnetic charges are
screened. This is completely analogous to the destruction
of Biot-Savart-type long-range forces between vortex
loops in superfluid helium if the temperature exceeds a
critical value, where the loops grow infinitely large."*

As long as the monopole loops are small, it is relatively
straightforward to calculate their effect on observable
quantities. In this paper we focus our attention on the
electric charge e, as a particular example. The reason for
this choice is the existence of quite accurate Monte Carlo
data on this quantity.’~’ In the absence of monopoles, e>
is equal to the inverse of the stiffness parameter . The
monopole loops lead to an enhancement of e? for decreas-
ing stiffness, which becomes quite dramatic close to the
critical point. Still, it is generally believed that the
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charge does not diverge near this point. This belief is
based on the close similarities of the Migdal-Kadanoff re-
cursion relation for the U(1) lattice gauge theory in four
dimensions and the xy model in two dimensions.® In the
two-dimensional case the renormalization is due to point-
like monopole vortices. There exists a renormalization-
group equation for the electric charge by Kosterlitz and

- Thouless which makes this problem one of the best un-

derstood examples of charge renormalization near a criti-
cal point. The charge grows smoothly up to the phase
transition point and has no divergence (except for a
discontinuous jump to infinity at the transition point it-
self).

In order to make things as simple as possible, we
choose the Villain form of the U(1) lattice gauge theory.
This has the advantage that the action is Gaussian for
every particular configuration of monopole loops. There
are no difficulties from nonlinearities in the electromag-
netic field, and the only problem is the correct counting
of the loops and the evaluation of their electromagnetic
interaction energies. We shall find that the calculated re-
normalized charges are in very good agreement with the
Monte Carlo data, except in the extreme vicinity of the
transition point, where a fully fledged renormalization-
group procedure is required, which unfortunately is un-
known at this time.

This paper is a detailed and improved version of a
Letter.’ Since our results require the calculation of a
great number of graphical terms, we find it useful to
record these graphs and our counting procedure.

II. THE VILLAIN FORM OF THE U(1)
LATTICE GAUGE THEORY AND THE MAGNETIC
MONOPOLES CONTAINED IN IT

The Villain form of the U(1) lattice gauge to be investi-
gated is defined by the partition function

3 exp 'y 3 (V;4;-V; 4, —2mn;) |, (1)

where x are the N sites of the D =4 hypercubic lattice, 4 ; is the electromagnetic gauge field living on the links (x,i) of
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the lattice, and V; is the lattice derivative across the links defined by

V,d;=A;(x+i)— 4;(x) . | @

Note that an external integer-valued electric current would enter the action in the form i 3, ®;(x) 4;. This shows that

can be identified with the bare electric charge of the system. The integer numbers n;; on plaquettes (x,i,j) produce a
periodic action which allows for the generation of linelike defects—the world lines of magnetic monopoles. If the
stiffness parameter is low these proliferate and cause a phase transition. In order to extract this behavior from the par-
tition function, we proceed as follows. .

We introduce a set of auxiliary electromagnetic field tensors F;;(x) on plaquettes and rewrite the partition function as

z=11

x,i<j

>, exp

232 2403 (V,4,—V, 4;—2mn,) | . )
{",-j(X)l

x,i<j x,i<j

f\/m;

We then perform the summation over n,;. This restricts the field tensor F; to integer numbers f;;. Afterwards, we in-
tegrate out the A4;(x) fields which enforces -

V,fu(x)=0 ’ (5)

where V; has the definition V, fij=fij(x)—f;(x—i). Condition (5) implies that the integer numbers f;;(x) on pla-
quettes form closed surfaces. The partition function now becomes

1
= fi®
(21TB)3N {f%‘)} 2.3 X,I2<J !

The divergence condition (5) is ensured by introducing a dual integer vector potential ;(x) and decomposing

fij(x)=€,~jk,vj&',(x—l) ’ (7)

85 fuyoexp 6

which can uniquely be done in the gauge @,(x)=0, apart from some boundary conditions. We then transform the sum-
mation over the remaining Z;(x) (i =1,2,3) into integrals using the Poisson identity:

> =3 fd;i,(x)exp 2mi 3 1(x)4;(x) ], ®)
a;(x) {1;(x)} x

where /;(x) (i =1,2,3) are integer numbers on links, with the following relation to the jump numbers n;;(x):
I,-(x)=e,~jk,V,-nk,(x+i) . 9)
This can be derived from Eqs. (4) and (7). Since we use the gauge 4,(x)=0, we can choose /, arbitrarily. We do this in
the following way:
Lx)= = 2-(74).
Then /;(x) (i =1,2,3) is extended to a four-vector /; (i =1, . . ., 4) satisfying
V.1.=0, (10)

i.e., the integer numbers on links /;(x) form closed world lines. These are the monopole loops.
Using (8) we can rewrite the partition function (6) as

H S Fi+2mi 314 an

Bx:<] X,

(21TB)N f ‘/2 B A OSV,II,OeXp

where

is-the continuous version of €, f;. It is the dual magnetoelectric field tensor, and 3, 4,1, is a local coupling of the
magnetic type. Therefore, the magnetic charge is

emg=27VB .

It satisfies, multiplied with the electric charge (3), the well-known Dirac relation
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een, =21

Integrating out the dual gauge field 4;, the partition function becomes

Z=0ap) S, by e |Bart 3 1 —xix | (13)
gy v xx
where
v(x)= 3 explik-x)— ! = Y expl(ik-x) ! 3 (14)
k A k |K |

2 ¥ (1—cosk;a)

i=1

is the lattice version of the four-dimensional Coulomb potential. The exponent in Eq. (15) contains the Biot-Savart-type
magnetoelectric interactions between the monopole world lines.'

ITII. CHARGE RENORMALIZATION

In the absence of magnetic monopoles the electric charge e can be obtained from the correlation function of the elec-
tromagnetic field tensor F;:

%2 (Fij(x)Fij(xl)> lno monopoleszﬁsﬁ . (15)
x

For the renormalized charge we use the same definition except that we allow for the presence of magnetic monopoles:

%E(F'](X)F'J(x’))EBR E:lz- . (16)

R

Formally, such correlation functions can be constructed from Eq. (4) by adding an interaction term with an external
source A,
2mi 3, Fijhy(x), (17
i<j
in the exponent and performing the differentiations with respect to A;; as follows:

) o)

' =—Z '
(Fy(x),F(x'))=—Z B2;;(x) 8A;(x")

Z. (18)

This procedure makes it easy to calculate the correlations. In Eq. (4), A;; enters at the same level as —2mn;; so that
both arrive at the final formula (13) in the same way, via Eq. (9), i.e., all we have to do is to replace /;(x) by
Differentiating (13) twice according to the rule (18) leads to the correlation function
8, VV—-V, ¥V
oy s s\, 2 Kl Vi,
(Fy(x), Fu(x')) =2B(8,¥V—V,V,)/VV -8 (l‘(")—_(vvﬂ i >1oop , (20)

where (_)100p indicates the expectation taken within the loop sum (13). Contracting ij with kI gives [remember
that (5,,VV—-V,V ;)/VV is a transverse field and there are three independent components in the four-dimensional space]

LS AFy ), Fy(x')) =~ =42 S, <I(x):1—l(x’)> . @1)
x €R X Vv
f
We can choose x'=0 because of translation invariance. (l/kz)%in}) of this series which only selects the leading

The operation (VV)~! in the Dirac brackets can directly
be executed by going into the momentum space where the
sum ¥, f(x) is the same as lim,_,, f(k). Then we ob-
serve that due to the vanishing of the total charge 1 .. .
3 li(x) the correlation function {/;(k)/;(k)) starts out F}Eﬂ)(li(k)li(k)): ,P_,mo
with the series

(L(K)N(K)) = Ak® 4+ Bk*+ - - . (22)

The operation (VV)~! amounts to taking the limit

term A. Equivalently, we can perform this operation by
applying two derivatives with respect to k:

9

2
ok (LKIK)) . (23)

In x space, this operation can be rewritten as

—5 3 x| XLx0(0) . 24)
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Hence, we arrive at the exact renormalization equation:

2
—Br=— 1+—2——2 x| 2(1,(x)1,(0)) (25)
e e

)
NN"—'

For small renormalization effects, we can expand the
denominator on the right-hand side and end up with an
approximate version:

ek zez—%z | x| 2(1;(x)1;(0)) , (26)

which has been given previously by Cardy!! and dis-
cussed further by Luck.!?

IV. GRAPHICAL EVALUATION

The evaluation of our Eq. (25) proceeds via a graphical
expansion. First, we consider the partition function (13).
There we have to sum up all closed monopole loops on
the lattice including their magnetic forces. We shall
write this in the following way:

Z=constx (1 + A, O +A, 50 +A, $+

27)

where the constants 4, 4,, 43, . . . followed by a graph-
ical symbol denote the number of the corresponding
graphs times the appropriate Boltzmann factors of the
magnetic field energy:

—47°B l 21 (x)v(x—x")(x ] ]

exp

The counting of the graphs proceeds in the following
manner.

We begin with the smallest graph; this is a graph of
length four which will be called the four-graph. Larger
graphs are developed by composition plus some deforma-
tions. There exists only one type of the four-graph:

0.

It occupies two dimensions which can be selected in (9)
ways out of the D-dimensional space under consideration.
Let us ignore, for a moment, this number of arrange-
ments. The six-graphs can be obtained by combining two
four-graphs which means adding two plaquettes:

0-o-m@ og-f -

In addition, there exists a three-dimensional six-graph
which is not a composition of two plaquettes. Instead,
the graph can be constructed by flipping two edges of a
three-dimensional one constructed before:

&~ &

The eight- and ten-graphs require more attention, since
their number is considerably larger than that of the six-
graphs. Nevértheless, the systematic procedure of count-
ing is quite similar. We take the first six-graph and add a
plaquette to the links of the six-graph, such as to form
eight-graphs. There exist four possibilities of doing so:
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(-0 - O3 ]

c..

Then we take the second sm-graph and do the same. This
time there are five three-dimensional eight-graphs and
two four-dimensional ones (a plaquette sticking out into
the fourth dimension is characterized by dashed border
lines):

8.12
Two of the three-dimensional graphs have already been
constructed from the graph 6.1 (namely, 8.6 and 8.8), so
only three new ones are left. The two four-dimensional
graphs have a different geometry but the same lattice
Coulomb potential.

Now we go on in the same way with graph 6.3. After-
wards we have to try turning the edges of each construct-
ed eight-graph and find the missing graphs. For example,

12

—] -
8.3 8.2

Furthermore, in the case of eight-graphs there exist
disconnected graphs, consisting of two four-graphs. For
the correct count we have to keep in mind that all graphs
carry a magnetic current which gives the Biot-Savart-
type electromagnetic interaction. In the case of two
separated loops, the direction of the magnetic current in
the two separated loops can always be ordered in two
different ways. For example,

=ala

8,20 8.21
Therefore, we have two contributions to the summation
(25), one with a positive and one with a negative sign of
opposite Coulomb interactions between the two loops. It
should be noted that the number of disconnected graphs
grows with the size of the lattice while the Coulomb in-
teraction decreases for increasing distance of the separat-
ed loops. The second effect is stronger than the first so
that the sum over two-loop contributions converges rap-
idly when adding disconnected graphs with larger and
larger distances between the disconnected graphs. In our
calculations, which we compare to existing Monte Carlo
data on finite-size latties, we have computed all discon-
nected graphs on a lattice of precisely that size. Uptoa
distance of four lattice spacings between interacting links
we treat the Coulomb potential exactly. At greater dis-
tance, it is sufficient to use the asymptotic form
v(r)=~1/(4mr?).

We can go on with the same procedure used above for
the eight-graphs to construct the ten-graphs. In the fol-
lowing we give some examples:
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Hence, we arrive at the exact renormalization equation:
2

1 _g=L1 1+L2?2 | x| 2(1,(x)1,(0))
e X

. (25)
el e

For small renormalization effects, we can expand the
denominator on the right-hand side and end up with an
approximate version:

e} zez_%z | x| X 1(x)1(0)) (26)

which has been given previously by Cardy'! and dis-
cussed further by Luck.!?

TV. GRAPHICAL EVALUATION

The evaluation of our Eq. (25) proceeds via a graphical
expansion. First, we consider the partition function (13).
There we have to sum up all closed monopole loops on
the lattice including their magnetic forces. We shall
write this in the following way:

Z=constx {1 + A, O+A, CJ+A, $+ ),
27

where the constants 4, 4,, 43, . . . followed by a graph-
ical symbol denote the number of the corresponding
graphs times the appropriate Boltzmann factors of the
magnetic field energy:

exp

—47’8 [% le(x)v(x—x’)l(x')] } .

The counting of the graphs proceeds in the following
manner.

We begin with the smallest graph; this is a graph of
length four which will be called the four-graph. Larger
graphs are developed by composition plus some deforma-
tions. There exists only one type of the four-graph:

.

It occupies two dimensions which can be selected in ()
ways out of the D-dimensional space under consideration.
Let us ignore, for a moment, this number of arrange-
ments. The six-graphs can be obtained by combining two
four-graphs which means adding two plaquettes:

0-0-m@m ol -G

In addition, there exists a three-dimensional six-graph
which is not a composition of two plaquettes. Instead,
the graph can be constructed by flipping two edges of a
three-dimensional one constructed before:

&~ (%

The eight- and ten-graphs require more attention, since
their number is considerably larger than that of the six-
graphs. Nevertheless, the systematic procedure of count-
ing is quite similar. We take the first six-graph and add a
plaquette to the links of the six-graph, such as to form
eight-graphs. There exist four possibilities of doing so:
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-0~ L0
e

8.6 8.8
Then we take the second six-graph and do the same. This
time there are five three-dimensional eight-graphs and
two four-dimensional ones (a plaquette sticking out into
the fourth dimension is characterized by dashed border
lines):

Two of the three-dimensional graphs have already been
constructed from the graph 6.1 (namely, 8.6 and 8.8), so
only three new ones are left. The two four-dimensional
graphs have a different geometry but the same lattice
Coulomb potential.

Now we go on in the same way with graph 6.3. After-
wards we have to try turning the edges of each construct-
ed eight-graph and find the missing graphs. For example,
—T’
j -—’

8.3 8.2

Furthermore, in the case of eight-graphs there exist
disconnected graphs, consisting of two four-graphs. For
the correct count we have to keep in mind that all graphs
carry a magnetic current which gives the Biot-Savart-
type electromagnetic interaction. In the case of two
separated loops, the direction of the magnetic current in
the two separated loops can always be ordered in two
different ways. For example,

&

8.20 .21

Therefore, we have two contributions to the summation
(25), one with a positive and one with a negative sign of
opposite Coulomb interactions between the two loops. It
should be noted that the number of disconnected graphs
grows with the size of the lattice while the Coulomb in-
teraction decreases for increasing distance of the separat-
ed loops. The second effect is stronger than the first so
that the sum over two-loop contributions converges rap-
idly when adding disconnected graphs with larger and
larger distances between the disconnected graphs. In our
calculations, which we compare to existing Monte Carlo
data on finite-size latties, we have computed all discon-
nected graphs on a lattice of precisely that size. Up toa
distance of four lattice spacings between interacting links
we treat the Coulomb potential exactly. At greater dis-
tance, it is sufficient to use the asymptotic form
v(r=~1/(4mr?).

We can go on with the same procedure used above for
the eight-graphs to construct the ten-graphs. In the fol-
lowing we give some examples:
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+D - T

10.24
This is a new graph. Another way of adding the pla-
quette is '

%+D-—>

But this gives nothing new. This graph has already been
obtained earlier, when adding a plaquette to the graph
8.4:

+ —_—
2.0

After the construction of all ten-graphs which can be de-
rived from eight-graphs we once again take a look at the

possibility of turning the edges in the constructed ten-
graphs. For example,

- -
10.33 10.69

* Let us now count the number in which a graph can be
arranged in space. This number is obtained by the fol-
lowing procedure: In a D-dimensional space there are (2)
possibilities to select a d-dimensional subspace. We have
a four-dimensional space and so a plane has 4X 3=
orientations. Because of its cubic symmetry the four-
graph has only one possibility in the two-dimensional
plane and so the number of the four-graph is 4 X 2 =6.

The graph 6.1 is two dimensional, also, but there exist
two directions in which the graph can point:

I B two possibilities .

The total number of graph 6.1 is therefore 2 X 6=12.
Let us now look at a more complicated graph, e.g., 8.6:

.

We embed the graph into a rectangle

==

which is useful for the counting process. First, the graph
is three dimensional, and a three-dimensional graph can
be arranged in four different ways in the four-dimensional
space. Second, the rectangle has three possibilities of
orientation in the three-dimensional subspace of the
graph:

@ @ @ three possibilities .

Third, there exist different arrangements of the graph
within the rectangle: (a) the single plaquette can be situ-
ated on the right- or left-hand side, = two possibilities;
(b) the two plaquettes can be situated on four sides, =
four possibilities. So we get the total number of this type
of graph:

4X3X2X4=96 .

10.16

10.16

The exact count of the four-dimensional graphs is a lit-
tle bit more cumbersome since one cannot draw a four-
dimensional rectangle. We find it easier to use the follow-
ing procedure: First, we consider the possibilities of a
three-dimensional subgraph. In most cases it is given by
the construction of the ten-graph via an eight-graph plus
a plaquette. Then we count the possibilities to add the
four-dimensional part, i.e., a further plaquette. It might
be that the multiplicity of the graph is now overestimated
since one of the three dimensions can be interchanged
with the fourth or that there is a symmetry in the graph,
which does not exist in the three-dimensional subgraph.
Those graphs have to be identified and omitted. As an
example we take the graphs 10.80 and 10.83b. Graph
10.80 consists of the three-dimension graph 8.5, which
has 48 possibilities to be arranged in a four-dimensional
space, the new plaquete can be added at two sites, always
in two directions of the fourth dimension. So the total
amount is 48 X2X2=192:

ey

There are 96 possibilities for graph 8.6; the new plaquette
can be added only at the left-hand side in the two direc-
tions of the fourth dimension. This will give the number
192, but because one of the old dimensions can be inter-
changed with the new one, this number is divided by two,
and the total amount is 96:

\'.J

At this point let us mention that in three dimensions
the topologies have been enumerated before, namely, in
the 1950s by Wakefield.!* In addition, Domb and Sykes'*
developed a special method of counting the total number
of graphs without specifying the topologies. Since they
do not distinguish between graphs carrying different
Coulomb energies, their results are of no use for us. As
far as the topology is concerned they quoted the numbers
of types for each order up to 10 from Wakefield (for ex-
ample, three for the six-graphs). Up to order 8, these
numbers are in agreement with our calculation. At order
10 there is a difference of four types between Wakefield’s
and our counting of topologies for the three-dimensional
graphs (four less in Wakefield’s calculation), whereas our
total number of three-dimensional graphs agrees with
that of Domb and Sykes. Since we could not find a
description of Wakefield’s procedure to construct and
count his graphs, we had no possibility of detecting
where the error might be. The four-dimensional graphs
were handled by Fisher and Gaunt!® who later general-
ized the method of Domb and Sykes. They also did not
specify the topolgies of the graphs. Our total number of
the four-dimensional eight-graphs agrees with those of
Fisher and Gaunt. In the case of four-dimensional ten-
graphs, however, we find a total of 432 graphs less than
in the paper of Fisher and Gaunt. Fortunately, the
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difference is only 1.9% of the total number and thus does
not noticeably influence the result of the renormalization.
In Table I we have listed the numbers of the different
graphs plus their contributions to the energy. The in-
teraction energy of the magnetic current is calculated
with the following graphical convention.*
We assign the vectors /;(x) to the links as shown in dia-

gram for the lowest loop diagram, consisting of the vec- .

tors
1(0)=(1,-1,0,0),
1(1)=(0,1,0,0),
1(2)=(-1,0,0,0) ,

Yy

L=
0)= -1 L= 1

Q)= 1
a

X

The total /;(x) configuration is
L(x)=8, ol(0)+8, 1(1)+5,,1(2) . (28)
The interaction energy is then obtained as follows:

Va1=73 21("

=L{(0)[IHO)+ 1D +I1%2)]+ 20 (D10 (1)

(x—x")(x")

+HOM(2)]4+20(1, D)}

One can easily see that only parallel links contribute to
the summation, so the pattern of calculation is to consid-
er all parallel links, count their distance x, and to sum up
all the Green’s function v (x) with these distances. Since
each loop is associated with a single plaquette, there are
4x 3 different loops. (We ignore in Table I the two
different orientations of the current.)

Hence, the number 4, is equal to

A, =6¢ TP (30)
where
U4'1 =% z li(X)v(x—x')li(X']
=2[v(0)—v(1)]=0.25 (31

is the Biot-Savart-type energy of the loop

For each graph, the data are listed in Table I whlch
has to be read in the following way.

As an example we take the second row of the six-
graphs:

2. (5 1208

The number 2 is just the running number of six-graphs
(graphs of total loop length six). The number 12(3) means

_2’ - 1,0,0,0,0,0,0,0,0,0) .

 that there are 12 (?) different graphs of this type in D di-

mensions. The number 3 in the parentheses is the dimen-
sion of the graph itself. The number 8 is the sum
—3,x | Xx=%"| 2(x)I(x’) which is needed for the evalua-
tion of the charge renormalization and will be discussed
below. The row vector lists the interaction potentials be-
tween the (parallel) links contributing to this graph.

The entries denote the following lattice potentials:

Green’s functions Code in the table

(1) position: v(1) =v(1,0,0, . .. ,0)

(2) position: v(1,1) =v(0,1,0, . . . ,0)

(3) position: v(1,2) =v(0,0,1, . .. ,0)

(4) position: v(1,3) =v(0,0,0,1, . . . ,0)

(5) position: v(1,1,1) =v(0,0,0,0,1, . .. ,0)

(6) position: v(1,1,2) =v(0,0,0,0,0,1, . . . ,0)

(7) position: v(1,1,3) =v(0, ...,1,0,0,0,0)

(8) position: v(1,1,1,1) =p(0, ...,0,1,0,0,0)

(9) position: v(2) =v(0, ...,0,0,1,0,0)

(10) position: ©v(2,2) =v(0, ...,000,1,0)

(1D position: v(3) =v(0, ,0,0,0,0,1)
v(l,1,1,2) —v(12)

The numerical values for these potentials are listed in
Table II. In our example, graph 6.2, the vector
(-2,-1,0,0,0,0,0,0,0,0) implies the interaction poten-
tial —2v(1)—w(1,1). This has to be added to the self-
energy of each graph, which for n links is (n/2)v(0).
Since this is common to many graphs it is noted only
once on the top of the graphs of the same length. Thus,
in our example, the total energy is

vg2=30(0)—20(1)—v(1,1) .

The numerical values for these potentials are taken from
Table II. This gives a Boltzmann factor for graph 6.2:

e —4rBg , — ¢ —4mB[30(0)~20(1)—p(1.1)]

— o —47BX0.3922

Together with the multiplicators 12(?), which in D =4
dimensions is 48, we find the contribution
2X 48 e ~4TFX0.3922 (4 the partition function Z. The fac-
tor 2 accounts for the two orientations of the internal
magnetic current.

Let us now return to the charge renormalization. Ac-
cording to formula (25) we have to calculate
3, | x| 2(1(0)I(x)). So we need the correlation of all
pairs of two links /(0) and /(x) which are contained in
every possible graphs. The loops carry the Boltzmann
factor evaluated above for the partition function Z. At
the end we have to sum over all the possible positions of
I(x). The simplest way to proceed is the following: We
take a graph from the expansion of Z (27) and arrange
two current elements on the links of the graph in a cer-
tain combination, thereby multiplying the original graph
of the Z expansion by the factor |x—x'|2(x)I(x").
Then we sum over all x and x'.
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Systematically, the expansion proceeds as follows:
Z-3 | x| X10)(x))
X

- AO+A, C0+A, &+

ADAO+AOALCT+
A0 A, O+A, LTI A, + -

+

+

+

Z (AO+A,C0& [+ -y,
Zi=Af‘ S |x—x'| x)(x') .

Only the interactions from loop to loop have to be count-
ed since the self-interactions of the loops have already
been taken care of in the connected graphs.

The calculation of 3 |x—x'|2(x)I(x’) proceeds in
complete analogy to that of the Biot-Savart-type energy.
From graph 4.1, for example, we obtain

S | x—x'|2(x)(x')
=2[ 12O (1)+1(0)(2)} +(12+ 12)I(1)1(2)]
=—_4. |
The origin of the factor 2 results from the fact that if /(0)
is fixed we can put /(x) either on one side or the other in
J

2
48 exp —4%0.25 +384exp
e

R

When continuing. this formula up to order 10 using the
numbers and energies of Table I, there are so many terms
that we refrain from writing them all down. The final re-
sult of renormalization is shown in Fig. 1. It is in good
agreement with the Monte Carlo data of DeGrand and
Toussaint,” also plotted on Fig. 1. When we go into the
extreme vicinity of the critical point, our renormalized
charge does not increase fast enough. In Fig. 2, our
curve is compared with the most recent Monte Carlo
simulation of Jersak and co-workers.%’

We are not able to include the 12-graphs in the count-
ing because of their huge number of different topologies
and Coulomb energies.

Clearly, there is the need for a renormalization-group
procedure for loops, which is similiar to that of Koster-
litz and Thouless for vortex pairs. Only with such a pro-
cedure would we be able to approach the vicinity of the
critical point.

+384exp |— -4#0. 4266
e

V. CONCLUSION

We have derived an exact formula for the low-
temperature expansion for the renormalization of the
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the dimension under consideration. For example, in the
case of graph 4.1,

or

LQ 1(0)

;y X
(fixed) (fixed)

As mentioned above, for each graph this number can be
picked up from the fifth column in Table I. The whole

contribution of the graph to the expectation
3. x| XI(x)I(0)) is given by multiplying the
number A4;, evaluated above, and the number

Sxx | x=x'|H(x)(x'). In our example, graph 6.2, the
last one is 8, and

A, =96 ¢ —47°Bx0.3922
i .

So we obtain the expectation

A, = —8%96 —47Bx0.3922

Using this procedure, we obtain from (25) the charge
renormalization up to loops of length six:

\

2
A70.4311 | +768 exp
e

2
~ A7 0.3022 ]
e

electric charge in the U(1) lattice gauge theory of the Vil-
lain form. It is caused by loops of magnetic monopoles.
We have calculated this formula up to monopole loops of
length ten. Because of the necessity of calculating the
Coulomb energies of the various loops and their interac-
tions we could not take over the earlier countings of loop
diagrams but had to distinguish carefully the different to-
pologies of graphs. When inserted into our formula the
results are in good agreement with Monte Carlo simula-
tions, except very close to the onset of the magnetic De-
bye screening, where the Coulomb phase collapses and
changes into a phase in which electric charges are per-
manently confined.
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TABLE I. The number of graphs, their energy, and their contribution ¥, - | x—x' | H(x)I(x') to be
extracted as explained in the text.

10.

11

12.

13.

14.

15.

16.

17.

Four-graphs

U @)

Six-graphs
2(2)

12(3)

4(3)

Eight-graphs

20

2

4(2)

6(3)

12(3)

24(3)

12(3)

48(3)

24(3)

12(3)

48(3)

288(4)

192(4)

48(4)

96(4)

24(4)

1 2(2)

16

12

64

36

20

20

32

20

12

36

24

10

12

+ 2v(0)

(—2,0,0,0,0,0,0,0,0,0,0)

+ 3v(0)
(0,—2,0,0,0,0,0,0, —1,0,0)
(-2,—1,0,0,0,0,0,0,0,0,0)

(0,—3,0,0,0,0,0,0,0,0,0)

+ 4v(0)
(1,—4,-2,0,0,0,0,0,2,0,—1)
(4,0,—4,0,0,0,0,0, —4,0,0)
(0,0,—2,0,0,0,0,0, —2,0,0)

( —6,2,0,6,0,0,0,0,0,0,0)

{-3,2,-1,0,-2,0,0,0,0,0,0)
(-1,-2,-1,0,0,0,0,0,0,0,0)
2,-2,0,0,—2,0,0,0,—2,0,0)

( - l, - 13070, - 1)0)0101 - 1’0:0)

(—1,—4,0,0,1,0,0,0,0,0,0)
2,-2,-2,0,-2,0,0,0,0,0,0)
(0,-2,-1,0,—1,0,0,0,0,0,0)
(-3,0,0,0,—1,0,0,0,0,0,0)
(-1,-2,0,0,-1,0,0,0,0,0,0)
(0,—2,0,0,-2,0,0,0,0,0,0)
(0,—4,0,0,0,0,0,0,0,0,0)
(0,0,0,0,—4,0,0,0,0,0,0)

(—8,2,0,0,0,0,0,0,1,0,0)+v(0)
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TABLE 1. (Continued).

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

&7

Ten-graphs

2(2)

2(2)

24(3)

24(3)

2(2)

2(2)

12(3)

12(3)

3(3)

3(3)

3(3)

3(3)

12(3)

12(3)

16

72

32

32

32

50

(—6,1,0,0,0,0,0,0,0,0,0)+v (0)

(-8,0,0,0,0,0,0,0,0,0,0)+4v (0)

+ 204,
(—2,4,-2,0,0,0,0,0,0,0,0)
(2,—4,2,0,0,0,0,0,0,0,0)
(-1,2,0,0,—1,0,0,0,0,0,0)
(1,-2,0,0,1,0,0,0,0,0,0)
(-1,0,~-2,0,0,0,0,0,4,0,—1)
(1,0,2,0,0,0,0,0,—4,0,1)
(-1,-1,1,0,0,0,0,0,1,0,0)
(11,-1,0,0,0,0,0,—1,0,0)
(4,—4,0,0,0,0,0,0,0,0,0)
(—4,4,0,0,0,0,0,0,0,0,0)
(0,0,—4,0,0,0,0,0,4,0,0)
(0,0,4,0,0,0,0,0,—4,0,0)

(—-1,4,—-1,0,-2,0,0,0,0,0,0)

(1,4,—1,0,2,0,0,0,0,0,0)

+ 5v(0)
(6,0,—4,-2,0,0,0,0,—1,—-2,-2)
(2,—6,—4,—2,0,0,0,0,4,0,2)—v(4)
(1,-3,0,—-1,0,0,0,0,0,—1,—1)
1,-1,-1,-1,0,0,0,0,—2,—1,0)

3,1,—4,—-1,0,0,0,0,—2,—1,—-1)




TABLE L. (Continued).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

AP L LR P L PRRFRE

42)

24(3)

48(3)

48(3)

48(3)

48(3)

48(3)

48(3)

48(3)

24(3)

24(3)

24(3)

24(3)

12(3)

24(3)

48(3)

48(3)

24(3)

24(3)

12(3)

48(3)

24(3)

48(3)

38

20

20

20

34

21

20

18

20

16

10

15

16

20

12

12

16

12

(—1,2,—4,0,0,0,0,0,1,—2,—1)
0,—4, —2,—1,0,0,0,0,2,0,0)
(0,—3,0,0,—1,—1,0,0,1,0,— 1)
(—1,—1,-2,0,—2,0,0,0,2,0,—1)
(2,1,—4,0,0,—1,0,0, —3,0,0)
(0,0, —2,0, —1,0,0,0, —2,0,0)
(—1,—1,-2,0,1,—1,0,0,—1,0,0)
(—1,—1,—1,0,0,—1,0,0,—1,0,0)
(—2,2,—3,0,—1,0,0,0,—1,0,0)
(—6,4,0,0,—2,0,0,0,—1,0,0)
(—4,—3,0,0,2,0,0,0,0,0,0)
(—4,-2,1,0,1,0,0,0,—1,0,0)
(—4,-2,0,0,2,0,0,0, —1,0,0)
(—6,2,0,0,0,0,0,0, —1,0,0)
(—4,4,0,0,0, —4,0,0,0,0, — 1,0)
(—3,-1,0,0,0,—1,0,0,0,0,0)
(—2,0,0,0,—1,—1,0,0,—1,0,0)
(—3,4,—1,0,—4,0,0,0, —1,0,0)

{—2,0,2,—-1,—2,-2,0,0,0,0,0)

(0,—4,0,0,0,0,0,0,0, —1,0)
0,—5,—3,0,1,1,0,0,1,0,0)
(07‘—3,07()’01 - 1)0)09 - 11010)

(_ 1’ —3, - 1,0,0,0,0,0,0,0,0)
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TABLE 1. (Continued).

29.

30.

31.

32.

33.

34.

3s.

3.

38.

39.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

48(3)

48(3)

12(3)

12(3)

48(3)

48(3)

48(3)

48(3)

24(3)

24(3)

24(3)

48(3)

24(3)

48(3)

48(3)

12(3)

24(3)

24(3)

24(3)

24(3)

24(3)

48(3)

48(3)

13

10

16

26

17

26

30

22

12

16

10

12

29

13

28

24

24

22

18

(-2,0,-2,0,-2,1,0,0,0,0,0)
(-3,0,0,0,-1,0,0,0, —1,0,0)
(-2,-2,2,0,0,0,0,0,—3,0,0)
(-2,-2,2,0,0,—2,0,0,0,—1,0)
2,-2,0,0,-3,-1,0,0,0,0,—1)
2,-2,—-1,0,-2,0,0,0,—1,0,0)
©,1,-1,0,-1,-2,0,0,—-2,0,0)
(2,0,—3,0,-1,-1,0,0,-2,0,0)
(-2,-1,1,0,—-1,0,0,0,—1,0,0)
(-2,1,0,0,0,—3,0,0, — i,0,0)
(-1,-4,1,0,0,0,0,0, — 1,0,0)
(-1,-2,0,0,-1,0,0,0, -1,0,0)
0,-1,2,0,-2,-1,0,0, —3,0,0)
(=2,-2,1,0,—1,— 1,(.),0,0,0.0)
(0,-5,0,0,—2,2,0,0,0,0,0)
(~2,-3,-2,0,2,0,0,0,0,0)
(0,—-1,-3,0,0,—-2,0,0,0,0,0)
(-2,-1,-2,0,-1,0,0,0,1,0,0)
(0,2,—4,0,-2,-1,0,0,0,0,0)
(1,-2,0,—1,-3,—-1,0,0,1,0,0)

2,-3,0,0,-2,~-1,0,0,0,—1,0)

(1,-4,0,—1,—1,—1,0,1,0,0,0)

(-1,-1,1,0,-2,-1,0,0,0, —1,0)

1249
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TABLE 1. (Continued).

52.

53.

. 54.

55.

56.

57.

58.

59.

61.

62.

63.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

I NN

bk HE

48(3)

48(3)

48(3)

48(3)

48(3)

48(3)

24(3)

48(3)

48(3)

24(3)

24(3)

2403)

24(3)

12(3)

24(3)

24(3)

12(3)

12(3)

24(3)

24(3)

24(3)

48(3)

24(3)

8

23

22

18

20

22

16

18

15

16

18

22

42

36

36

22

34

46

48

(—=2,-1,1,0,—1,0,0,0,—-2,0,0)
(1,-2,-2,0,0,-1,0,0,—1,0,0)
(0,—4,0,0,—2,1,0,0,0,0,0)
(0,-2,-1,0,1,-2,0,0,—1,0,0)
(-1,—-2,-2,0,1,— 1,0,0,.0,0,0)
(-1,—4,-1,0,0,0,0,0,1,0,0)
(-2,3,—4,0,-2,0,0,0,0,0,0)
(-1,1,—1,0,—4,0,0,0,0,0,0)
0,—1,—4,0,—2,1,0,0,1,0,0)
(0,—3,0,0,—1,-1,0,0,0,0,0)
0,-2,2,—1,-2,—1,0,0,0,0,0)
(0,—2,0,0,—2,0,0,0,0,—1,0)
(0,-3,-2,0,2,-2,0,0,0,0,0)
(2,2,—2,0,0,—4,0,0,—3,0,0)
(3,1,—5,0,0,-3,0,0,—1,0,0)
(4,0,—4,0,0,—2,0,0,-3,0,0)
(—2,-2,2,0,0,0,0,0, —3,0,0)
(4,—3,0,0,—4,-2,0,0,2,0,—2)
(4,—3,0,—2,—4,-2,0,0,2,0,0)
2,-3,-2,0,0,0,0,0,—2,0,0)
(2,1,—4,0,0,—2,0,0,—2,0,0)
3,1,-5,0,0,-2,0,0,—1,0,0)

(4,0,—4,0,0,—4,0,0,0,—1,0)
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TABLE L. (Continued).

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111

112.

113.

114.

384(4) 20 1,-2,-1,0,-2,-1,0,0,0,0,0)
384(4) 20 (0,0,—2,0,-2,0,0,-1,0,0,0)
384(4) 14 (-1,-2,-1,0,0,0,0,—1,0,0,0)
768(4) 14 (-1,-1,-1,0,-2,0,0,0,0,0,0)
384(4) 14 (0,—3,—;1,0,—1,0,0,0,0,0,0)
768(4) 14 (-1,-2,0,-1,-1,0,0,0,0,0,0)
384(4) 13 (-~1,-2,-1,0,-1,0,0,0,0,0,0)
384(4) 14 (-2,1,-1,0,-3,0,0,0,0,0,0)
Q‘b 96(4) 10 (—4,0,0,0,2,0,0,—3,0,0,0)
q:j 384(4) 10 (-3,0,0,0,—1,0,0,—-1,0,0,0)

384(4) 6 (—4,-1,0,0,0,0,0,0,0,0,0)

768(4) 16 (-2,-2,0,0,1,—-1,0,0,0,0,0)—v (12)
.... 384(4) 10 (-1,-3,0,0,—1,0,0,0,0,0,0)

384(4) 10 (-2,0,0,0,—4,0,0,1,0,0,0)

384(4) 10 (-3,1,0,0,-3,0,0,0,0,0,0)

96(4) 6 (-2,-5,0,0,2,0,0,0,0,0,0)

192(4) 16 (0,-3,0,0,0,—1,0,—1,0,0,0)

384(4) 16 (0,-2,0,0,-2,-1,0,0,0,0,0)

384(4) 16 (-1,-1,0,0,—1,-1,0,—1,0,0,0)

viig

)/
5

@

)—l]—( 96(4) 10 (-2,-2,0,0,2,—1,0,—2,0,0,0)
j[:lp

L4

Y%

5

&Y

384(4) 10 (-2,-1,0,0,-2,0,0,0,0,0,0)
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TABLE 1. (Continued).

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131

132.

133.

134.

384(4) 16 (0,-2,-1,0,0,—1,0,0,—1,0,0,0)

384(4) 14 (-1,1,0,0,-5,0,0,0,0,0,0)
384(4) 8 (—4,1,0,0,—2,0,0,0,0,0,0)

192(4) 14 (-1,-2,-1,0,0,0,0,—1,0,0,0)

192(4) 8 (-3,-2,0,0,—1,0,0,1,0,0,0)

192(4) 6 (-3,-3,0,0,1,0,0,0,0,0,0)

.
&
&
-
g 192(4) 17 (0,—1,0,0,—2,—1,0,—1,0,0,0)
(=
]
E

96(4) 11 (-3,2,0,0,—4,0,0,0,0,0,0)
96(4) 18 (—1,2,0,0,-5,—1,0,0,0,0,0)

48(4) 16 (0,—1,-2,0,0,0,0,—2,0,0,0)

*

4

96(4) 20 (21_31—2)0’_2:0,010’0v0’0)
768(4) 20 1,-1,-1,0,-2,0,0,—1,—1,0,0)

96(4) 24 (27010’01'_2, 0!09 —'2, _3’0;0)
576(4) 16 (1,-3,-1,-2,0,0,0,0,0,0,0)
384(4) : 14 (1,—4,0,0,—-1,0,0,0, —1,0,0)
192(4) 22 2,—3,0,0,—2,—2,0,0,0,0,0)
384(4) 23 (1,0,—1,-3,—-1,0,—1,0,0,0)
192(4) 26 2,0,—2,0,-2,0,0, -2, —1,0,0)

96(4) 24 (2,0,—2,0,-2,0,0,—2,—1,0,0)

! j 384(4) 22 (1,0,—2,0, -3,0,0, —1,0,0,0)
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TABLE I. (Continued).

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

146.

147.

148.

149.

150.

151.

152.

153.

154,

155.

156.

157.

384(4)

384(4)

96(4)

384(4)

384(4)

384(4)

384(4)

192(4)

96(4)

192(4)

96(4)

192(4)

96(4)

96(4)

4(2)

24(3)

12(3)

24(3)

24(3)

24(3)

12(3)

18

15

16

24

16

10

12

19

22

20

22

21

30

16

10

10

12

(1,—2,0,0,—3,—1,0,0,0,0,0)
(1,—4,—1,0,—1,0,0,0,0,0,0)
(0,—3,0,0,0,—1,0, —1,0,0,0)
(1,0,0,0—1,—2,0,—1,0,0,0)
(1,—4,0,0,—1,—1,0,0,0,0,0,0)
(0,—4,0,0,—2,0,0,1,0,0,0)
0,—2,0,0,—4,0,0,1,0,0,0)
(2,0,—1,0, -2, —2,0, —2,0,0,0)
(0,—1,0,0, —2,0, —2,0,0,0)
(—2,-3,0,0,0,0,0,0,0,0,0)
(0,—1,—2,0,0,0,0,—2,0,0,0)
(1,0,—2,0,—3,0,0, —1,0,0,0)
(0,—1,0,0,—1,—1,0, —2,0,0,0)
(2,0,0,0,~2, —3,0, —3,0,0,0)
(—2,-4,0,0,0,0,0,0, —2,0,0)+3v(0)
(—6,—2,0,0,0,0,0,0,0,0,0)+ 3v (0)
(—5,0,—2,0,0,0,0,0,0,0,0)+v (0)
(—4,—4,2,0,0,0,0,0,0,0,0)+1 (0)
(—2,-4,0,0,0,0,0,0,0,0,0)+(0)
(—5,-4,1,0,0,0,0,0,0,0,0)+(0)
(—3,-2,-1,0,0,0,0,0, —2,0,0)+v(0)
(—7,0,1,0,0,0,0,0,0,0,0)+v (0)

( _7: - 1,0,0, 1)040)0; 1,0,0)+U (O)
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TABLE L. (Continued).

202.

203.

204.

20s.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222

223.

224,

0

48(3)
48(3)
24(3)
24(3)
48(3)

48(3)

48(3)
48(3)
48(3)

43(3)

48(3)
48(3)
43(3)
48(3)
48(3)
48(3)
48(3)
48(3)
48(3)
48(3)
48(3)
43(3)

48(3)

-8

-8

(1,—2,2,0,1,—1,0,0, —1,0,0)
(—1,2,—2,0,—1,1,0,0,1,0,0)
(0,0,0,—1,0,0,0,0, — 1,0,3)—v (14)
(0,0,0,1,0,0,0,0,1,0,—3) +v (14)
(0,0,—1,-3,0,0,0,0,1,0,3)

(0,0,1,3,0,0,0,0,—1,0,3)
+ SU(O)+U4_1 +l)6.3

(-1,0,1,-1,0,—1,0,0,2,0,0)
(1,0,-1,1,0,1,0,0, —2,0,0)
(1’0’0,0)— 1) - 190:070, 1:0)

(-1,9,0,0,1,1,0,0,0, —1,0)

(-2,2,2,0,0,0,0,0, —2,0,0)
2,—-2,-2,0,0,0,0,0,2,0,0)
1,-1,1,0,-2,1,0,0,0,0,0)
(-11,-1,0,2,-,1,0,0,0,0,0)
(-10,1,—1,0,— 1,0,0,2,0,9)
(1,0,-1,1,0,1,0,0, —2,0,0)
(-2,2,0,0,2,-2,0,0,0,0,0)
2,-2,0,0,-2,2,0,0,0,0,0)
(1,-1,1,0, —2? 1,0,0,0,0,0)
(-1,1,-1,0,2,-1,0,0,0,0,—1)
(0,0,—2,-2,0,0,0,0,2,0,2)
(0,0,2,2,0,0,0,0,—2,0,—2)

(0,0,—1,1,0,0,-1,0,0,0,2)—v (4)
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TABLE 1. (Continued).

225.

226.

227.

228,

229.

230.

231.

48(3)

48(3)

48(3)

48(3)

48(3)

48(3)

48(3)

—8

-8

(0,0,1,—1,0,0,1,0,0,0, —2)+v (4)

(0,—-1,1,0,0,—-1,0,0,0,0,2)—v (4)

(0,1,—1,0,0,1,0,0,0,0, —2)+v (4)

(-2,2,0,0,2,—2,0,0,0,0,0)

2,-2,0,0,-2,2,0,0,0,0,0)

(-1,-1,0,0,1,0,0,0,1,0,0)

(1,1,0,0,—-1,0,0,0,—1,0,0)

TABLE II. The lattice Coulomb potential in Eq. (16) in four dimensions.

|x | 2= 1024 j2 4 k2412172 i j k ! v(x)
0.0000 0 0 0 0 0.154933
1.0000 0 0 0 1 0.029933
2.0000 0 0 0 2 0.008 246
3.0000 0 0 0 3 0.003 287
4.0000 0 0 -0 4 0.001724
1.4142 0 0 1 1 0.012715
2.2361 0 0 1 2 0.005 457
3.1623 0 0 1 3 0.002 721
2.8284 0 0 2 2 0.003249
3.6056 0 0 2 3 0.001991
4.2426 0 0 3 3 0.001418
1.7321 0 1 1 1 0.007 734
2.4495 0 1 1 2 0.004 182
3.3166 0 1 1 3 0.002 366
3.0000 0 1 2 2 0.002773
3.7417 0 1 2 3 0.001 811
4.3589 0 1 3 3 0.001 330
3.3641 0 2 2 2 0.002 063
4.1231 0 2 2 3 0.001473
4.6904 0 2 3 3 0.001 139
5.1962 0 3 3 3 0.000928
2.0000 1 1 1 1 0.005 591
2.6458 1 1 1 2 0.003 448
3.464 1 1 1 1 3 0.002114
3.1623 1 1 2 2 0.002 444
3.8730 1 1 2 3 0.001 669
4.4721 1 1 3 3 0.001 255
3.6056 1 2 2 2 0.001 884
4.2426 1 2 2 3 0.001 382
4.7958 1 2 3 3 0.001 086
5.2915 1 3 3 3 0.000 893
4.0000 2 2 2 2 0.001 533
4.5826 2 2 2 3 0.001 181
5.0990 2 2 3 3 0.000958
5.5678 2 3 3 3 0.000 805
6.0000 3 3 3 3 0.000 694
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1
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FIG. 1. Renormalized charge ez as a function of the bare
charge e compared with the Monte Carlo data of Ref. 5. The
numbers 4, 6, 8, and 10 indicate the sizes of free-monopole loops
included in the formula (25).

0.201- .
MC data of Jersak et al.

015
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FIG. 2. The renormalized fine-structure constant in the im-
mediate vicinity of the critical point in comparison with the
most recent Monte Carlo data of Ref. 6. The curve labels 4, 6,
8, and 10 mean the same as in Fig. 1.
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