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We study the fluctuations of membranes with area and curvature elasticity and calculate the renormalization of the curvature
elastic constants due to thermal fluctuations. For the mean curvature elastic constant the result is the same as obtained previously
for “ideal membranes” which resist only to curvature deformations. The renormalization of the gaussian curvature, on the other
hand, depends on the elastic constants. In an incompressible membrane, it is five times weaker than in an ideal membrane.

The behavior of a wide variety of physical systems
is governed by fluctuations of tensionless two-
dimensional interfaces, called membranes [1-10].
Examples are red blood cells, bilipid vesicles, and
soap layers separating oil and water regions in
microemulsions. It is therefore important to study
such fluctuations. Up to now, investigations have
been confined to what may be called “ideal” or
“mathematical membranes”. These are infinitely thin
surfaces resisting onl/y to curvature deformations,
with an energy [1,2]
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where ¢,, ¢, are the two principal curvatures, ¢, is the
spontaneous curvature, and g;,(&) =09,X*(£)d,.X*(&)
is the metric of the surface in the parametrization
X&) (a=1, 2, 3; i=1, 2). Since the argument will
not depend on ¢, we shall set it equal to zero.

The energy (1) is reparametrization invariant. As
a consequence, the path integral which governs the
fluctuations

Z=T] [ ax Q) exp(~T ' Ear)  (2)
¢
requires two gauge fixing J-functionals. In ref. [9]
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we have investigated the softening of the curvature
elastic constants in two gauges, the Gauss map and
the normal gauge. In both gauges we found that «, £
change with temperature as

k=ko—TXxiaL, k=k¢—Txial, (3)

with a=3, a=-%, L=(1/27) In(kpax/Kkmin) (the
first value agreeing with the original calculation in
ref. [4]).

The question arises as to whether the result (3)
depends on the idealization of the membrane to be
an object controlled only by (1). Physical mem-
branes are made of elastic material or they behave
like an almost incompressible fluid. Thus, in equilib-
rium, they carry two more material parameters, the
moduli of compression and shear, K and u, respec-
tively. In terms of these, the elastic energy may be
parametrized as follows [13],

Eansic= | 028 /50 ({Ke? +00) 4)

where a,, o, are the volume and shear distortions,
respectively. If A;, A, are the principal extension
ratios, then

A—4

A1, a= .
Av=hitz &= i

As far as fluctuations are concerned, the following
parametrization of the energies (1) and (3) is most
convenient. Let X&(&) be the equilibrium configura-
tion and X%(&) = X§& (&) +6X?(&) an arbitrary neigh-
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boring configuration. We can then use the metric
8;(§) to define the connection [ ;=
1(0:gjx+ 0,8~ 0,g;) and covariant derivatives (for
a vector v; it is Dp;=0d,u,—I ;4*). Decomposing
8 X*(&) into the tangential and normal components
with respect to the equilibrium configuration

8 X(&)=1'9,X3(&) +YNE(&)
(No=(1/\/20)8, Xy X 3, X,) ,

we can expand (indices are raised and lowered with
g g s gOij )

8;=8oy+ ALy =8oyt+T;+71, +uu+r Ty, (5)

where

V; ED?V+ Co ijTj s

1./ =D% - Cy/v, (6)

with Cy,” being the extrinsic curvature matrix
Cor’ =N3D? D

whose trace C,= C,;” and determinant
Ko=3[(Coi')* — COijCOji]

are equal to ¢, + ¢, and ¢,c,, respectively.
Hence, with (5), we calculate

a,=—1+ ,/g/g

=148’ —{Ag/Ag;' +}(Ag)* +

=1, +iyr +(r,) 171+,

=1(Ag’ —10,/Ag. %) +...

=%(tif+rfi)2—%a‘2,+.... (7)
The elastic energy becomes, therefore, to lowest order
Ea= | €8 /o U (K-u)(z,')

+au(r/+v )% . (8)
For the mean curvature energy
o [ a2¢ Jz C?

=1, f d%¢ /g (N*D2X7)? (9)
we find the expansion
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by | 47¢ /30 [C3+2C0(D3 +4C3—2Ky)

X (v=1'DYv—4Coyt't) +v(D3)*v
+2CoCY(D?vD)v+2vD? D) — L C3(Dyv)?
—4KovDiv+ (C3—Ko)(C3 —4K,)v?
+2Co(DECy)vDv +...] . (10)

This expression is obtained by expanding eq. (9) first
in powers of v only (at 7'=0) as done in ref. [7],
then observing that the invariance of free energy
under reparametrizations 8X?(&)=—A(¢£)0 X"(é)
implies invariance under changing » and 7’ by
dv=—Av, 8ti=-X —N1;'. As a consequence, , Tt
can be replaced by F=v — ‘L"DO —3Co T+, T =0
and this is what leads to (10).

We are now ready to calculate the fluctuation
effects. The measure of integration was shown in ref.
[9] to be

J@3Xg3/4(é)
=11 | a0 e~ 085
/ .
X I1 J d2t g(¢&) .
¢

In the elastic energy, the integration over t‘ gives,
after some algebra, a fluctuation energy

Eq=3T Trin[ - (K+u)(D§) —uR,]
+3TTrin[ —u(D§) —uRo], (11)

where R, is the gaussian curvature of the background
configuration. After subtracting the energy of a flat
reference membrane of the same area, we obtain the
logarithmically divergent contribution

AES=4TL [ 02 g

R, H
X[—2?—<K—-+'u +1)Ro:|. (12)

Apart from that, there remains a ¥ dependent energy
from the elastic energy, which is reached at some 7
of the order of D~!Cv, and is of the order C22.
Consider now the fluctuation of the curvature
energy (10). As far as the quadratic terms in v are
concerned, we extract the propagator (wpv)=
(T/k)(D3) 2 and obtain the same renormalization
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as for the ideal membrane (see ref. [7]). Since we
are considering only smooth curvatures (DC~0), the
Dj piece of the term in (10) is a pure boundary term,
just as in the ideal case.

The only new terms involving 7v and 11 are
accompanied by at least three powers of C,. After
expressing them in terms of » at the minimum of the
elastic energy, they are of the order C3r?2.

Thus the renormalization of x is the same as given
for the mathematical membrane in refs. [7] and [9].
In contrast, due to (12), gaussian curvature renor-
malizes differently depending on the elastic con-
stants, namely with

- 4 4 u
a=-4+ ¢ +[6 +2(K+u +1)}

2o,k 2

3 "K+u 0%
rather than —4+ ¢ = — 2 found previously for the
mathematical membrane [7,9]. As a consequence,
spherical incompressible bilayer vesicles have the
distribution [7] N% ™"V with a=7p*—6p+§
where p is the ratio of liquid crystal bending to elastic
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bending energy, (the first being caused by the rod-
like shape of the molecules, the second by the differ-
ence in the extensions of the two monolayers).
Experimentally, a lies half-way between 1 and 2 such
that p appears to be around 3.
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