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THERMAL DECONFINEMENT TRANSITION FOR SPONTANEOUS STRINGS
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Within the recently proposed membrane model of quark confinement we test the possibility that all string tension M is
generated spontaneously, by calculating the deconfinement temperature 7;. We find Ty = 0.68M. in reasonable agreement
with Monte Carlo data for SU(3) lattice gauge theories.

We want to suggest that strings between quarks follow an action that involves only the extrinsic
curvature of a two-dimensional surface x*(£) and reads

=5 @ 5K, (1)

where K2 =(D,x")* and g,;, D, are the metric and covariant derivatives, respectively. The possibility of
adding this term to the usual string action have previously been realized by Polyakov and by the author
[1,2] (independently) and several consequences have been studies [3]. We would like to point out that if the
action (1) is taken by itself, as a model of its own, it reveals several desirable physical properties. In
contrast to the ordinary string model, the coupling constant « is dimensionless and always contains
interactions, in any parametrization. These interactions generate spontaneously a string tension. For this
reason we shall call (1) a “spontaneous string model”. The full quark potential of the model was calculated
in a previous paper [4] (where we have also allowed for an additional Nambu-Goto term, for generality).

As a first test of the idea we calculate the thermal deconfinement transition and find that it lies near the
place where it is expected for strings between quarks. Above this temperature, the confining tension is
gone and the surface begins ondulating without control. The situation is similar to that in microemulsions
[5.6], where the addition of surfactants drives the surface tension negative and leads to a proliferation of
surfaces.

The calculation is easiest in the Gauss parametrization

xt(€)=(&% &', x?), a=2,...,d-1,
with an action in which the internal and external fluctuations are treated separately [1,3]
1 a2 ij a u

oty =5 [d% g [ (D) + N/ (8,x0,x" — g, + S,)] (2)
with fluctuating x“, g;,, A/, The fluctuations in x“ can be integrated out giving a one-loop contribution

— 232 ij 1 2 ij ii
Ay =1(d=2) Trlog((D*)’ - DN/D,) — 5~ [d*¢ g (NVg,, — X'). (3)
which for d — oo can be evaluated at the extremum.
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For a surface spanned between two static quarks at a large extrinsic distance R

ext I @ thermal
environment of inverse temperature 8, =1/T,,,, we can take g, = p,8,, = const., X/ = Ng"/ = const. and
have the effective action

J241— (d 2)Rext ext\/POPl[fT 0+Af +Afan+(1/20‘)()\0/P0+}\1/P1)] (4)
with
T= dzq A
0—f(277)21()g(q4+M’z)_E’
AfT—(T E —/ d;; )f dq[logw +q?+X)+(A=0)]

et £ [ ot N )R )

—1og[<w,a+42) +X (e} + 7)),

where d=3(d—2a. A=3(Ag+A), 8=, —1Ay)/2X, «,=27Tm with 1/T=(1/T,,)p, being
the intrinsic temporal size of the surface. The T=0 piece f7~ 0" is renormalized dimensionally so that it
takes the form

fT0=f(X) =X /dm= —(X/4n)[log(AA) — 1] - X /4=, (5)

where A = p? exp{ —[2/(d— 2)]4o/a( p*) + 1} is the dimensionally transmuted coupling constant, being
defined as the place where f7=0 has its saddle point (= maximum for real A) with a value A. All
quantities A,, p;, A are now finite and we may, moreover, renormalize po- P to be equal to unity at 7= 0.
The quantity p*> = 3(d — 2)A/47 is the spontaneously generated string tension of the system.

The finite temperature correction of f7=* is

AfT=2wa%[log{l—exp[—(k2+/\)l/2/T]} + (>\=O)]

_ ZT‘f Kl( T\/_)/m ~1aT?, (6)
m=1
where K,(z) is the modified Bessel function [;°ds exp(— Vs®+ 12z). The term — i=T? is, of course, just
the free energy of two-dimensional massless “black body radiation”. Alternatively, we can expand

fo+tAfT= —(—10g(T/T _ 2

L2

K, 3R,
where T= /A e /4w, Ay=X/47>T?. Finally, we have to take into account the possible anisotropy of the
gap 6 via

u MS
3
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(]

4 -
+§- ~m—>\T/2m] , (7)

Af=2T ¥ [A;+A,;-(w;+X)1/z—m]+T(w\_1—f7\)—%8, (8)
m=1

with

A,ﬁz(wiﬂr%}\l{li[1+(4A)\/A21)w,2,,]1/2})1/2, AX=A, — A,
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Fig. 1. The string tension as a function of the reduced tempera-
. ture T../T. where T, = {e"/[2a(d—2)]"*\M = 0.502M
and M is the string tension. The curves are for a purely
spontaneocus string. The deconfinement temperature is seen to
lie at T, =0.68M. The curve —-—-— represents the simple
analytic approximation (13) explained in the text. The upper
three curves show the corresponding gaps Ag, A A= L(A; +
0 1 2 Ay) as a function of temperature and —-—-— is our simple

Text{Text approximation.

Extremizing the action (4) in py, p;, A, 8 we obtain .=/, = 3d— 2R B M*MYT) where MXT)

= po01 (47 /N f.or = Joo0, AT /M) fy + Af T+ Af™] (normalized to unity at T=0) and X, & are de-
termined by the equations

(/) fo+AfT+Af*™] =0, (3/38)Af™=(1/47)[1/(1-8)]|[6— (47/R)f]. (9,10)
The quantities p,, p, are given by
po=(1-8)[2— (47/N)fud] . or=(1+8[(47/N) f] (11.12)

_ As alowest approximation we ignore § and the Bessel functions in (6) and solve the gap equation (9) by
A =X such that f,, =X/4m—37T? p, =(1+37°T*/X)"" and we obtain
1

MY (T)=[1- (4n2/30) T2 /[1 + (42 /30)T?] 2 (13)
This gives the estimate for the intrinsic deconfinement temperature

T =~ (3/4n%) VX =1.95T = [6/7(d—2)]"/* M =~ 0.98M. (14)
The physical, extrinsic, temperature associated with this is

TSa=Ti /o1 = TL/V2 = 0.69M. (15)

In fig. 1, we have plotted M? of (13) as a function of T.../T, as well as the gap A.

A full numerical evaluation of the eqs. (9)-(12) shows that, contrary to the finite R case [4], the gap
distortion remains up to the deconfinement transition extremely small, so that there are almost no
corrections to the approximate curve (see fig. 1). In fact, if § is ignored but the formulas evaluated
accurately, the curve for M? does not differ from the one drawn in fig. 1 and the curve for X coincides with
the central full X curve.

The complete calculation has I;Ql,d lowered to T, 4= 0.68 M. Our deconfinement temperature is in
reasonable agreement with Monte Carlo data on lattice gauge theories which find 0.45M for SU(2) [7,8)
and 0.5M-M for SU(3) [8] *'. The hypothesis that strings arise spontaneously can therefore well be true.

*! The large discrepancy is due to various estimates for the relation between the dimensionally transmuted coupling constant and the
string tension (A'®"/M x 10%) found in the literature. Ref. [9] gives a value of 6+ 1, ref. [10] gives 11 + 3, ref. [11] gives 9.4 4 3, ref,
[12] gives 11.9+ 6 and ref. [13] gives 9.6. For an overview see also ref. [14].
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