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HOW TO DO THE TIME SLICED PATH INTEGRAL OF THE H ATOM
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In response to criticism concerning the formal nature of the Duru-Kleinert transformation of the path integral of the H atom,
we perform this transformation explicitly in the time sliced form and arrive, of course, at the desired product of gaussian factors
which yield the harmonic oscillator. We also point out where previous attempts to do the same thing went wrong.

In 1976, H. Duru and the author [1] proposed a procedure of how to transform the path integral of the H
atom into that of a harmonic oscillator. The transformation involved two key steps: a change of the time vari-
able and taking the “square root of the coordinates” via a Kustaanheimo-Stiefel transformation. The paper
was structural in character and the transformation was done formally in the continuum version of the path
integral. This has given rise to justified criticism [2,3] and prompted Inomata [4] and Ho and Inomata [5],
in 1981(2) to attempt going through the Duru-Kleinert procedure in thé time-sliced form of the path integral.
After some manipulations they did arrive at the same result as ref. [1]. Unfortunately, their manipulations
contain two essential mistakes, such that their arrival at the known answer was fortuitous and the problem they
set out to do remained unsolved. Since their work has been quoted in numerous publications [ 7] in conjunction
with refs. [1,7], the mistake has obviously gone unnoticed (it has reappeared in a number of these papers).
Since it concerns an elementary problem of quantum mechanics, we feel that it is worth clarifying the situation
by giving a correct application of the Duru-Kleinert procedure to the time sliced version of the path integral,
arriving at the desired product of gaussian integrals of a harmonic oscillator. Along the way, we shall point out
where the previous attempts [4,5] to do the same thing went wrong.

For simplicity, we shall consider only the case of the two-dimensional H atom. The starting point is the
observation that the Fourier transformed amplitude

G(xy, x, |E)= Jdt eE (xpt]x,0) = jdtj PP x exp(iJ‘ dr [p-x—H(p, x)])
0 ¢} 0

= [ar eyl 2,y = (o liE-H) " 12 (1)
o]

can also be rewritten in any of the three following ways
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Gt 2l E) =(ry) [ds Cxylexpl —isfr) (—E)] I, (22)
~fr) [ds Cxolexpl —is(A-E)r)] x> (20)
0
=12 )1 2(r) [ ds Calexpl—isf ) (A= E)(D)] 152> (20)
0

where f(r) is a rather arbitrary function of r. By grating the s axis with s,=¢en, n=0, .., N+ 1, e=s/(N+1) and
inserting a complete set of states at each s,, (2b) and (2c) become

N+1

G (xy, x, |E)~f(rN+l) ds H(JdD ) [:Il (xnlexp[ —ie(H—E)f(r,_)]1%_1) , (3a)

Gt 2l ) =2 rye )/ 2(r) [as T (jd%) CEalexpl —ie/ "2 (ra) (H=E)f"*(r, 1)) 112, 1)
° n=1

(3b)
where x,=x;, X, =Xy, and this can be rewritten as
G(xy, X, | E) ~f(rN+|) ds H (Jd"x,,)
N+1 N+1
X 1_[ dpn exP<i ZI [pn'(xn_xn—l ) —E(Hn_E)fnz(rn—l)]) H] (4a)
n=1 n=
x N
G(xy, X, | E) zf“z(rNH)f”z(ro)st I1 (Id"xn)
n=1
]
N+1 .N+l
X Hlfdp,. exp(l Y [P (xp—x,_1)— f”z(rn)(Hn—E)f”z(rn_l)]), (4b)
n= n=1
where H,=1p2 + V(x,). We can now integrate out the momenta, thereby obtaining
~ Srner) J d (J d? X, )
G(xb,xa|E)~ (2n€)p/2fo/2(r0) OdsnE[l (2n€)D/2fD/2(rn)
N (x—x,_y)? 172 ):l
><exp[—1n;l (m2ef(r,,_1) —2[V(x,)—EN " (rn1) ) | (5a)
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G(xp, x.|E) ~ S (w1 )3 (10) st ﬁl (j d®x, >

(2me) 222 (r ) (r0) ) (2me)P2fP2(r,)
N+1 _ 2
Xexp[_ingl (26f1(/’2x(nrn;f'}1721()rn*1) _6[V(xn)—E]fllz(rn)fuz(rn—l))] . (Sb)
Inrefs. [1,2] eq. (5a) was written directly in the continuum as
G (a2l E) = jds 2% oxp| i jds (555 - rw-a10 ) | (6)

and no attention was payed to the time slicing.
In the case of interest, V(x) is the Coulomb potential, the function f(r) is chosen as f(r)=r and a two-
dimensional Kustaanheimo-Stiefel transformation (also called Levi-Civita transformation)

2 2
X =ui—uz, Xp=2Uu, (7)

(i.e. x, +ix,= (u, +iu,)? such that u,, «, may be viewed as “square roots of the coordinates” x,, x,) was used
10 reexpress

r=u?, x*=un?u?, d*x/r=d%u, (8,9)

such that the path integral (6) became that of a harmonic oscillator in two dimensions with mass A/ =4 and
frequency w =,/ —2E/M

4 Z[st gle’s j Pu exp(ij ds’(§&2+Eu2))] . (10)
° u.:fv?)=:i\/;\/:; °

The square roots of x, , denote the inverse transformation (7). For each x;, there are two solutions #(s) and it
was shown that one has to sum over the two solutions *./x, to include all paths in x space.
The closed form of this expression is well known and leads to

wM

Gxe, %, | E) = %st e 2rif sin(ws)
0]

X[exp(;g$ [(ui+u2) cos(ws)—2uy,- ua]>+(ub—>—ub)] ,

which are the results stated in refs. [1,2].
The main point of ref. [3] (and ref. [4]) was to attempt the direct integration in eq. (5). They correctly
observed that if (7) is done at each pseudo-time s,, then due to the quadratic nature of (7) one has

(Xn—Xp_1 )2 =(t,—Un_ 1) (u,+u,_)?, (11)
such that the kinetic terms become

N (X, —X,_1)2 N (w,+u, )’

Y =y e (0, ), (12a)

A= 2€r,_, = 2eui_

N+l(xn Xp 1)2 __N+l (un+un—1)2

,,Z.W_nzlm(un—un_l)Z. (126)
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The further steps in ref. [3] (and ref. [4]) however, are mistaken. The measure of integration transforms into

1 u3v+1 N d%u, 4u? 1 4 N < d2u, 4 \ N u?
i ier, 2 2mi i = 13
2nie u} ,BI 2nier, 22miex?2 ,113. 2miex?2 ,,I;I, ul_, (13a)
1 N [ d?u, 4ul 1 4 N d?u, 4
2mie,h J 2mier, | 2 2miex2 ,,1:[1 ( 2nie><2> : (13b)

The extra factors 1/2 in the integrals of d’u,, correct for the fact that if u runs through the two-dimensional
space, x does so twice. The jacobian is d(x,,, X2,)/0(Uy,, Uz,) =4uZ, not (u,+u,_,)?* as stated in eq. (18) of
ref. [5] (and two lines before eq. (13) of ref. [ 5]). Moreover, there is no freedom in choosing 7,= § [ (#,+u,_1)?]

instead of r,,_ ,, as claimed in the last sentence of p. 388 of ref. [4] (and before eq. (13) of ref. [5]). Once it is
decided which of the formulas (2a)-(2c) should be used, the time sliced form of the factor f(r) is uniquely
prescribed to be f(r,), f{r,_.) or f"2(r,)f"*(r,_,), respectively. According to eq. (17) in ref. [4] and eq. (5)
in ref. [5]) those authors decided to use the form (2b) (their prefactor ry shows this). Hence, to be consistent,
they should have proceeded with the factors r,_,. It was the impermissible “choice” of 7, which compensated
the mistake in the measure of integration and led to the correct result.

Let us see how to do things properly. The grated form, the path integral in u, space reads

T e 4 N0 2w, 4 \ N W]
1 d ie2s ____ ° n n
2! e 21tie><2,11;11( 21tie><2>nl:[1(",2171)

N+1 + 2 _ 2
Xexp|:i Y ( (@, 2”"_1) (2t — 1) +eEui_1):| , (14a)
n=1 un71 26
TN d?u, 4 N, 4w, )? (a,—u,_ 1) >:|
ds ie2s n n n n n E 3.2 . 4
i ¢ nr_].( 2nieX2)exD[an1( Jalul S teEJunun, (14b)

It differs from that of the two-dimensional harmonic oscillator in several ways due to the time slicing:
The kinetic term contains two very sharp nearly gaussian peaks, one around u,=1u,_; and one around
u,= —u,_,. Near the first, we expand the exponent

u, ,-Au,  Au’ )
9

2 _ 2
(un+un71) (un unfl) :4Au,2,(1+ ! +

u_, 2¢ uz 4u_ |
(ot u,_1)? (U, —up_1)’ ( 1 Au; 1 (u,_y-Au,)? )
n T B e ELTARYY VN (B + > — ], 1
S, 2 A\, T2 ey (13)
where
Au,=u,—u,_, . (16)
Near the second, we expand in the same way except that
Au,=—u,—u,_,. (17)
The product in the measure (13a) is expanded accordingly, near each peak, as
u;", u, 'Aun Aui
=142 . 18
g—l u?17] ll,z,,l ( )
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So, the product of all u2/u?_, ratios in (14a) can be written as

N+1 N+1 . A 2 . 2
exp( y 1og(u;’-,/u,2,_l))=exp[ 5 (2""—; Auy | Ay (U Bt)” )] (19)
n=1

n=1 un—l ufl—l (u)21~l)2

We now integrate out successively d2u;, d%us, ..., d>uy or d*4u,, d*4us, ..., d*uy, each integral over d’4u, being
performed at fixed u,_,. The harmonic part of the energy gives the product of symmetrized harmonic oscillator
amplitudes of mass 4, for infinitesimal pseudo-times ¢,

< N N+1
% st eiezsn(jd2un) H %[(unflunfl())_*—<_un6|un—10>] . (20)
n=1
0

n=1

If there were no further point splitting terms, this product would result in the total symmetrized amplitude
%jdse““ 3 (CupSo |80 + ( —upsylu0)) , (21)
0

which is the desired final result (recall egs. (23)-(26) inref. [7]).
What remains to do is to convince ourselves that the additional

N+ 2y, -Au,  Au? (#,_,*Au,)? . Au? (u _-Au, 1 Au? )]}
+ ‘2 n n + n 4 n n - n , 22
EXp{’zl[ u%—l ";2171 (uizpl)z : 2e "3—1 +4“i—1 (222)
N+1[T Ag? 1 Au2 1 (u,_,-Au,)? )
4{ — — - “ 22b
e"p{ﬂ [‘ 2 ( i RPN R A § (22b)

do not produce any further contributions. The principal danger is that of additional centrifugal barrier type of

terms of the form V! e/u?_, - [£ds’/u?(s’). In order to see that these are absent we use the fact that Auj, is

small of order € such that we can proceed perturbatively. The correlation functions of Au,, at fixed u,,_, are
(Aui AWy =Li€d,, 67 . (23)

To lowest order in perturbation theory, the first and fourth terms in (22a) disappear, since they are odd in Au,,.
The other terms give

. 1 1 1 i€ X 1 1
— — =— — — — =0. 24a,b
‘<2u3,_. i, 4u%,_1>e Wl ‘<4u%_1 4u%,.1>e 0 (242.0)
To second order in perturbation theory we have to add to (24a) the expectation
2
L[N w,itAw, Auy o u,_cAu, )] >
el 2 + 4 , 25
<2! |:,,);‘1 u_, "2 u (25)

which gives an additional ie/4u2_, thereby cancelling (24a). Hence there are no centrifigal barrier types of
terms.
To complete the argument we have to show that when doing an intermediate integral over d?u, at fixed u,_,

A(u,) jdzu,, exp(—4Au2/2¢)(1+..)B(u,_,) , (26)

where A(u,) is the product of integrals after u,, B(u,_,) collects those before u,, and the dots stand for the
expansion terms of (22a, b), that these terms do not produce any first derivative terms of A(u,_,),
(0/0u,_,)A(u,_,)e, and that the second derivative term has the wusual Schrodinger form
(e/2M)(0%/0u’_,)A(u,_,) (with M=4 in the present case). Thus we expand
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Au,)=A(u,_\)+0,A(u,_, )Aul,+ 40,0, A(u,_, )Auw' AW +..., (27)

and torm the averages. It is obvious that the second derivative terms are not modified by the dotted terms in

(27) since these would be of order €. As far as the first derivative terms are concerned we calculate in the case
(22a)

. 2 .
aiA("n_1)<Auﬁ,(2£’l*;—Au" +i%4""_lA_'fﬂ)> ’

u;_ 2e u, |

and see that the two contributions cancel each other, as they should. In the case (22b) there are no such terms
at all.

Thus we have proved that the non-trivial factors appearing when doing the Duru~Kleinert transformation in
the time sliced form all cancel each other and the path integral of the H atom reduces to the product of purely
gaussian factors whose result is the symmetrized amplitude of the two-dimensional harmonic oscillator.
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