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SPONTANEOUS QUANTUM GRAVITY: A SOLUBLE MODEL
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We present a model of gravity in which the Planck mass is generated spontaneously by a similar mechanism that is responsible
for the tension in a recent membrane model of strings. The action describes very floppy fluctuations of the physical space in some
large flat embedding space. The coupling constant is dimensionless but the fluctuations are so violent that they produce sponta-
neously a mass which plays the role of the dimensionally transmuted coupling constant and can be identified with the Planck

mass.

In 1967, Sakharov suggested that Einstein gravity
should eventually be understood as a “metric elas-
ticity of space™ caused by the fluctuations of all ele-
mentary particle fields [1] #'. With the recent idea
that these are excitations of a fundamental string [3],
Sakharov’s suggestion had led to the derivation of
gravity from string fluctuations. In this approach, the
Planck mass M} appears as an input parameter which
characterizes the mass splitting between the elemen-
tary particles in the string model.

Even though this approach appears to be mathe-
matically consistent, it is frustrating from the point
of view that the fundamental mass M should depend
on an infinity of (probably forever) unobservable
excited states of elementary particles (in this respect
it is not much better than a brute-force cutoff beyond
which a theory can never be tested at all). In addi-
tion, there is something unsatisfactory in the string
model of elementary particles itself. Strings are sup-
posed to be just another way of describing the forces
between some unknown subelementary constituents
which, in turn, should be due to some non-abelian
gauge fields. These, however, obey a dimensionless
action and the string tension arises from violent gauge
field fluctuations as the dimensionally transmuted
coupling constant of the system. From this point of

! Supported in part by Deutsche Forschungsgemeinschaft under
grant no. K1 256.
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view, 1t would be more attractive to find another for-
mulation of gravity in which the Planck mass arises
spontaneously. Indeed, this idea has been pursued in
a number of works [4].

It is the purpose of this note to propose a new sim-
ple model for such a mechanism. In contrast to ear-
lier attempts, the fluctuations are not those of the
elementary particles but of curved space itself,
assumed to take place in some unknown space of
larger dimension d with d>>4. The model is based
on a generalization of an action which has recently
been used to generate the string tension sponta-
neously [5,6],

o= fd%\/gszsz, (1)

1
2a
where x*(&) (a=1, ..., d; i=1, 2) describes the posi-
tion of the string and g;=9,xd,x the metric. This
action has the attractive feature that « is dimen-
sionless and asymptotically free. This is why there is
a spontaneous generation of string tension as the
dimensionally transmuted coupling constant of the
system. Thus it has a great structural similarity with
non-abelian gauge theories underlying the string. Such
an action controls the physics of membranes [ 7] and
plays an important role for cell walls, lipid vesicles,
and microemulsions. Its possible relevance to string
physics was recognized only last year [5] and is
beginning to attract an increasing amount of research.

Since in physics the same type of mechanism
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appears often at different places and since the string
action, with tension M, may be viewed as the two-
dimensional analogue of gravity, with Planck mass
My, it is suggestive to assume a similar mechanism
to generate the Planck mass in gravity. Our starting
point is the simplest four-dimensional action which
describes extrinsic fluctuations of space and has a
dimensionless coupling constant #2

zzlafd“g /g D*D?xD,D%x . (2)

Here x°(&*) (a=1, .., d; u=1, ..., 4) gives the posi-
tion of the physical space in some unknown embed-
ding space with metric g,,=9,x9,x, and D, is the
covariant derivative. This type of action has previ-
ously been studied in the context of “floppy mem-
branes” [8] by which we define surfaces with neither
tension nor curvature stiffness) and it was noted that
o is asymptotically free in the ultraviolet. Thus we
expect the fluctuations to generate also here a mass
spontaneously. In order to show this we use the same
technique as for the non-linear O(N) model [9]. We
rewrite (1) as an action of independent fields x and
g, and enforce the relation g,,=d,xd,x by a lagran-
gian multiplier A*:

ZEIEfdzé /g D*D?xD,Dx

—2(8,%0,x—gu)] . (3)

In the sequel we shall assume d to be very large. But
just as in the o-model, where the large-N sponta-
neous mass appears as early as V=3, our result is
hoped to be valid for any d > 4. Anyhow, nothing is
known about d and it could well be infinite. Inte-
grating out the x fluctuations we arrive at the purely
intrinsic action

w
%:;(tr In(D®-D,4*D,) _Jd45 \/g%) ,

(4)

where & =da/4. For d— oo, this action has to be max-
imized in A**. The result will be some functional

#2 Since we only want to demonstrate the basic mechanism we
shall ignore all other invariants of the same dimension. We also
do not write down the intrinsic counterterms.
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A =X"gu] . (5)

The final action involves only the metric and is sup-
posed to describe gravity.

When calculating the trace log of D? there is a
quartic divergence of the type oc [d*¢ \/;7 (cosmo-
logical term), a quadratic one oc [d%¢ \/§R (Ein-
stein term), and a logarithmic one oc fd“é\/g'R2
(Cartan term). These have to be removed by cor-
responding counterterms. For a space of constant
curvature R, we can assume the maximum to have
the form 2*’=/g*" with a constant 1 and find the gap
equation

1 1
= 500 = 5 (OGad . (6

1
&

where G,,. is the Green’s function (—D?+m?)~!
(x=0, y=0) which is known [10] to be equal to

m?* —2K 3K

G'"2:87r2(a'—4) 1672
m?*—2K{ K . 3y )
— A In—+y— 3 +w(32—

+ 67 <ln4n+y 1+w(s+ip) +w(5—ip)

(7

(with K= R/12 the inverse square radius of the space
and p’=m?K—2). For small X, the bracket has the
expansion In(m?*4n)+y—1—4K/3m? and the gap
equation starts out as

l_ ‘u(dfd,) 1 {lr y N V—~1>
&  8n*(d—4) 327\ 4mu 2
K
F—t.., 8
167t\/1 ®)

where u is an arbitrary mass scale.
This is the place where we can introduce the
dimensionally transmuted coupling constant

A=dnptexp{ —32n*[& "' +4u’~*/(d—4)]
so that eq. (8) reads

1 A 8m 1
Oz_gﬁ-(logj—?ﬁ)-%..., (9)
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where Ay is the ratio A= 164/81 K> The total renor-
malized action is &/ = 3dfd*¢ \/§ f with a “free energy
density”

A A
f= ———2—(1— logi

16m
327 + 9 e ix>+"” (10)

An additional finite cosmological counterterm is
necessary to make f=0 at K=0 so that the total f
becomes

A yl A l6m
flm=§ﬁ<1—z—logj+9 /IK>+"" (11)

Inserting the gap equation this has the small-K
behavior

oz A 6=
tot — 327[ 9 /

Thus, in this limit we have obtained a spontaneous
Einstein action. Writing & as (1/16zn2)(c2M3%/H?)
X fd*¢ /g R with the Planck mass

M= JchiG~2.177x10 g
~1.221 %10 GeV/c? ,

Jin
=162 6R+ (12)

we identify
Mi=1d/Anl6. (13)

For larger K, the theory predicts the appearance of
higher powers of the curvature with well-defined
coefficients. Let us study the behavior for very large
curvature. Then

3+ipx3—m?/3K, 3-ipaxm?/3K,
and

v(3+ip) +y (3 —ip)

o =2+ Y _3KIm? 4+ fxm?/K+ ...,
so that
G2 m? 2K 3K
" koo 8T2(d—4) 1672
m?=2K K
+ Ton2 (11’14—7; +y—1-2y
11 3K 49 m?
+?—W+m?+...). (14)
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Hence the gap equation becomes

2 2
0=—1—(—lnl—ln£—+4 50+ 12K >+

327 A A 27 A
15)
Thus, for K—oo, A grows like
Az 12K [log(K*A)—4y+39] .
The free energy density has the large-K limit
S K* InK? (16)

This growth of f, at large K will strongly dampen
any singular solution of the field equations. In par-
ticular, the physics at the center of black holes will
be quite different from that following Einstein’s
equations. For completeness, we write down the full
gap equation

i

A K?
O:WI:_IH/:'L - ln—[ +2In16+4y

<1/ 1. 16
—% n<4+2(1_” Y (n=9)? +81ix

16
_2(1_ An2)
ni(1—4n ’(4n2—9)2+81/1,<):|’ (17)

and the full free energy density
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Fig. 1. The free energy density 32m*f,,/4 as a function of
K/K=R/R where K=R/12=16 exp(2y)ﬁ and /A is related to
the Planck mass via M3 = 2a’\/zit /6. The upper curve shows the
gap function A=A(K). The dashed curves are the approximations

(9), (12).
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T 2
Jrot A I:i—ln/—l—anT+21n16+4y

~327%| 2 i
2 o

+2K—<—2+ Y l(-2(1 +2n)+2-B(1-x)
A 2 £&in

—4n?(1—n?)In{[(n>=9)> +81i,]/n*}
+1in2(1—4n*)In{[(4n*-9)*
+812K]/16n4})>]+const., (18)

where the constant is such as to achieve f, =0 at
K=0. Fig. 1 shows a plot of the gap 4 and the free
energy density as a function of K/K=R/R where
K=R/12=./216 exp(2y) ~50.755,/4=193.870
Mz/d.
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