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I point out that in Euclidean space spontaneous strings (=strings with extrinsic curvature
stiffness and spontaneously generated tension) can form glueballs, even at the classical level (in

contrast with the ordinary string).

In the limit of infinite dimensions, the fluctuations can be in-

tegrated out and the glueballs are found to have a mass to tension ratio of ~3.5 in the purely

spontaneous case (

Recently, Polyakov' and the author? have called for
the addition of an intrinsic curvature term

Ax=(1/20) [ d%Vg (D) (1)

to the ordinary Nambu-Goto action Ang
=M} [ d*6V'g [where x“(&) parametrizes the surface
in d dimensions, g;; is the metric 3;x“d;x“, and D, are
the covariant derivatives]. The string emerging from the
new action has many more features in common with the
string formed between quarks in QCD than the Nambu-
Goto string: At the classical level it is scale 1nvar1ant
but fluctuations generate spontaneously a tension.! -3
This gives an additional linear rise in the quark potential
at long distances® but does not change Liischer’s
universal (d —2)w/24R correction.>” In a thermal envi-
ronment, the tension decreases and vanishes at some
deconfinement temperature® T, of the order of the ten-
sion. The most dramatic advantage over the Nambu-
Goto string, however, is the existence of the potential at
short distances’ where it has precisely the same
asymptotic-freedom behavior «1/R behavior as the
short-distance force due to gluons. Even the quantita-
tive behavior is apparently correct—the prefactor has
twice the Liischer value, in agreement with potential fits
to the spectrum of the W /J family.”’

The above properties have been demonstrated only in
the limit of infinite dimensions. If they were to hold at
d =4, the spontaneous string would provide a major step
towards understanding the QCD forces in terms of sur-
face physics.

In this paper we would like to draw attention upon
another pleasant property of spontaneous strings. They
give rise, in a natural way, to glueballs in Euclidean
space and, at the classical level, this is obvious. A tube
of extrinsic radius R.,, and timelike length B, has an
action

Ay =27R Bex(1/2aR gxt +M%JG ). (2)

This is minimal at R, =1/ V 2aM % and gives a mass
to tension ratio for a glueball ground state of
Mg /Myg=21V2/a.

In Minkowski space, the stiffness leads to the ex-
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=no Nambu-Goto tension term in the action).

istence of closed static string solutions in addition to the
rotating ones of the Nambu-Goto action. These have
been investigated by Curtright and co- -workers.'®
Braaten and Zachos!! looked at the quantum instability
of the static solutions caused by the presence of higher-
derivative terms in the action.

The purpose of this paper is to study the effect of fluc-
tuations upon the Euclidean glueball state exactly in the
limit d — . First we make the quantities g;; and x in-
dependent fluctuating variables by means of a Lagrange
multiplier term

(1/2a) [ d?Vg NU(3,x%8;x~g;;) .
Then we expand the action around the background
x=(E% R, cOS(E'/R 4y ), R oy sin(E' /R )0, . . . ,0),

where £°€(0,B.,,), £'€(0,27R ) =(0,L ). If g; has
the form p;8;;, then the curvature action of the back-
ground is

Ago=(1/2a) [ d%Vg (D%, )

l_]’

=27TRext ext\/m 1/2(1le zxt . (3)

Since x appears only quadratically in the path integral,
the d —2 transverse degrees of freedom can be integrat-
ed out and we find

A= Ago+1(d —2)/2] [mn D,AD;)

— [a%Vgrig,—8;)|. @

In the limit d — o, the total action is determined by a
space-independent saddle point at which it reads

A=[(d —2)/227R o BV PP (5a)

-where, at infinite circumference of the cylinder L., po

and p, are equal, p,=p,=p, and’

2
g=M3g+ f d k2 In(k*/p*+Xk%/p)
(2m)
A1
a 2a
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with a=[(d —2)/2]a and Mig=[2/(d —2)]M}g.
For symmetry reasons we have set A;;=2,g;; and defined
A as (A;+A,)/2. Renormalization with an intrinsic
cutoff mass u gives

ﬁv—l 1n(X/X)+—1—
47 41 28

Ao M

Po  Pi

g§= ) (6)

where A=u’4me ~" exp(—4mw/@+1). We also introduce
8=(A;—A,)/2X. At L, =, A;; is isotropic, i.e., 8=0.
For finite L., g receives a finite-size correction
Ag“+Ag® where L =L,V p, is the intrinsic circumfer-
ence and

Agt=—m/3L2—2VR/nL) S KLV A7) /m

A=1

=—27/3L*+V /L

+(2/L) i (V' q2+A—q,—X/2q,)

n=1
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[with g, =27n /L, L =41’e 7 /V7, K (z)=Bessel func-
tion] and

Agd=(1/LWVE(VTI=8—1)

+(2/L) 3 (A} + A7 =V g2 +X—q,)+8/4n

n=1

(8)

with
A, =(g;+A[(1-8)/2]{1£[1-85 g7 /A(1—-8)"]'*})'?

The action has to be maximized in 1,8 and minimized in
po,i- For L=o, the extremum is given by
47 /Gp=14v, A=A,=2Ae", where v is a number, called-
“normality,” which characterizes the content of the or-
dinary Nambu-Goto tension in the action. Its value is
fixed by M % g=RA,v/4m. The total tension is (d —2)/2
times M L, =1,(14v)/4m.

+(X/4m)In(L2/L %) (7 For finite L we have to solve the equations
J
—1/28p, A +M %6 /A —(1/4m) In(X/X)+(3 /3K ) AgL+ Agd)=0, 9)
Ao/Bpo=8 1y » (10a)
M/ap =101+ /) Ry 1IN 2+ 2M R —ghy) L10b)
3Ag°/38=[X/4m(1—8M)][8(1+47M kg /X)+(1—8)4m/2ap A, + (4w /R)gk, — M 3g)—1], (11

where A, =AL2/47% and
gL, =2M 45— (X /4m)[In(A/X)—1]+Agl+Ag? (12)

is the total g at the extremum. The solution is found by
iteration and yields an action which rises linearly in L,
with a minimum at very small L_,, but finite intrinsic L.

For v=0 (purely spontaneous string) we find a ratio
Mg /M, ~V(d—2)/2X3.5 . (13)

An analytic estimate of the order of magnitude of the ra-
tio is possible using the large-L expansion of v =L gL
in which

8= —214+v)/(14+2v/3)k;, A/A,=1—1/2%, ,
po/P=1+(144v/9) /2K, (1+v)(1+2v/3) ,
p1/p=1+(148v/9)/2X, (14+v)(142v/3) ;

(14)

v~ Lo [A(14+v)5/47][1+(14+3v) /6%, (14+v)], (15

where p=41 /a(1+4v), so that the minimum of v gives

Mg /M ~V(d -2)/2Vr(1+v)

XV T+ (1439 /6R L 149] | e

=V(d—2)/2V2m(1+3v)/3 . (16)
The true value at v~0 in Eq. (13) is about twice as large.

Computer experiments of lattice QCD without fer-
mions!? give a value of around 3. In principle, a deter-
mination of this ratio could be used to find out which is
the value of v chosen by the string of QCD.
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