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Strings with extrinsic curvature stiffness are characterized by two parameters, the tension and the “normality” » which specifies
the ratio between ordinary Nambu-~Goto tension and spontaneously generated tension (the case v = co is the Nambu-Goto string
itself). In the limit of infinite dimensions we show that for all » the asymptotic 1/R.,, piece in the quark potential has the universal

strength — [(d—2)/217/12R..

A spontaneous string is defined by the action
[1’2] #1

JZ{:MNG +'MK
=M |46 Ja+5-[ae Ja(De)?

d—2 -
=57 % Vi
+(12Q)[(D2x%) 2 +29(3,x0;x* —g)1}, (1)

where .«/ng is the ordinary Nambu—Goto action and
& is proportional to the square of the extrinsic cur-
vature [we use the notation of ref. [2] with x*(&)
parametrizing the surface in d dimensions, g; being
the metric d,x%,;x* (i=1,2), and D, the covariant
derivatives]. In the limit d— oo, the action is dom-
inated by the saddle point of the integrated quantity

(4]

A =uly +%<tr In(D*—D;AYD))

~faze \/ém‘fg,-,-) , (2)
where ./, is the action of a background configura-
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#! See also related previous work on biomembranes in ref. [3].

tion xo(&). The static quark potential is obtained by
choosing x4(&)=¢& (i=1,2) so that g; in the large
brackets is simply replaced by g;—J;.

The spontaneous string seems to be a much better
surface representation of the string between quarks
than the ordinary string: Its action is asymptotically
free at short distances and the behaviour at large dis-
tance is controlled by a string tension which contains
a dimensionally transmuted coupling constant

J=u’4n exp(—7) exp[ — (4n/a@—1)] .

At finite distance, the saddle point of (2) has a
constant g;=p,d;, AY=2,g; with values obtained by
extremizing

A=[(d-2)/2]27RexiBexi8 » (3)

with

- a2
g=+/PoP: (M?«; + Jﬁ[ln(c]“ +A0g%+2147)]

_I/&+(1/2d)(10/p0+/1,/p,)) (4)

(g:=k;/ \/,5,- =intrinsic momenta) which, after intro-
ducing the intrinsic dimensionally transmuted cou-
pling constant 1 and setting Myg=A,v/4n=
Ae’v/dn, becomes

g=+/Pop1 { (A, v/4m)V
— (M4m)[In (A 2) + (172a)(Aolpo +1:/p)1}.  (5)
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At the extremum, p, =p, =p=4n/&, Ay=4, =4, and
g=g=1,(1+»)/4n. The total string tension is
Mz, =[(d-=2)/2]g In a thermal environment, the
spontaneous string looses its tension at a deconfine-
ment temperature of about 0.7M,, [5].

Several recent papers have attempted to calculate
the quark potential V'(R) for arbitrary R. Olesen and
Yang [6] have assumed the saddle point to be con-
stant with 2,=Ag,; (“isotropic gap™) at finite R and
found that then V(R) has, for R—oo, a 1/R
(“Liischer” [7]) term that depends on the normality
v, namely —[(d—2)/2]¢,n/12R,,, With ¢,=1—3v/2
X (1+v)2. The author has pointed out [8] that the
gap parameters Ao and A, are very different (“an-
isotropic gap”) and that, for constant gaps, the
parameter ¢, receives an additional —12/(3+2v).

An important observation was made by Braaten et
al. [9,10]. Since the end points of the string do not
move, they satisfy dox*=0 (a=1,...d), and hence
Zoo=1, at £'=0 and R.,, for all times. The gaps of
refs. [5,6], however, have gyo=po# ! and violate this
condition. It is therefore necessary to allow for a &'
dependent saddle point. Braaten et al. were able to
find such a saddle point in the limiting case of infi-
nite stiffness, «—0, with M%sa=fixed. In that limit
they find that ¢, has the value unity, as for the pure
Nambu-Goto string. From the fact that c=1 in two
opposite limits the authors conclude that “it appears
very unlikely that there are corrections of any kind
to the Liischer term”. The reasoning, however, is not
entirely correct. It can easily be checked that with
M2 =24,v/4n and 2 expressed in terms of u? and
& as given above, their limit corresponds to v~
4r/d— oo, in which case the Liischer term becomes
blind for the space dependence of the gaps. Indeed,
our formula for ¢, gives also c=1 and a non-trivial
v-dependence of ¢, is not at all ruled out. In addition,
refs. [9,10] contain a mistake in the renormaliza-
tion ¥2 which leads to an unphysical behaviour of the
surface ratio intrinsic/extrinsic (see the end of sec-
tion 3 in ref. [10]).

Since a universal ¢ would be theoretically much
more appealing than a v dependent one, it is impor-

#2 The proper covariant treatment of (D?)? as in ref. [5] would
lead to a gap equation (13) of ref. [9] and (3.11) of ref. [ 10]
with no In(1 + o) term. The error is of the same kind as that in
ref. [ 11] which there it had so dramatic consequences that they
were noted soon. (See ref. [12].)
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tant to use space-dependent gaps and calculate ¢, for
all ». This is what we want to do in this note and the
result is, indeed, ¢, = 1. Physically, the reason turns
out to be quite simple: For large R, the gap which at
the ends has p,=1, increases rapidly over a length
scale &, = 1/\/1,, ( =persistence length) to a practi-
cally constant value whose magnitude is logarithm-
ically divergent in the short-distance cutoff A~', like
[1/(1+)][In(A4?/X)—1], and does not have any
first-order variation in 1/R. The large-R potential is
therefore that of an ordinary string of a slightly
reduced length (by ~2¢,). this is why ¢,= 1. In order
to show this we proceed as follows. First we expand
g around the R=oo configuration allowing for
smooth quadratic deviations in p,;=p(1+r;),
Aiy=A,(141 ;). (In contrast to ref. [8] we shall not
renormalize g, 2, down to finite values by a factor
In(A?/u?).) This gives ¥ g=g+Ag with

2n
Ag:gjgg{%rz_ —ryl,—r_ I
0

—~[1200+ )13 —[122(1+ )] 2} +Ag", (6)

where 9=2n¢'/R,,, F+ and [, are the combinations
1(0x1) of ryl, and

AgR = (Z,,/N)Sl
with

¢
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(with Ag =4,p, R4, /n?) containing the finite R cor-
rections. The leading terms are

Agl =g(—2// g —1/32g)/ (1 +v),

of which the first is an additive constant in V(R),
and the second the correct Liischer term. So, what
we want to prove is the absence of more 1/,/1x con-
tributions. Most dangerous are the linear terms in

r+, /. which read
2n

Agk =1{—ng(1¢+ ro+R r_+L.1, +L_1_).
]

#3 Braaten et al. choose their limit so that they can ignore the /5
terms which, as we see from the properly renormalized equa-
tion (6), amounts to taking the limit ¥—co.
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Under the assumption of a constant saddle point we
found the coefficients [8] L, =4S, —2S,, L_=25,,
R, =28,  R_=2(S,-S,)+ R, where .S, denotes the
sum

S, s<"; ~jdn)1/ n®+iz.
N 0

An expansion in powers of 1/\/ﬂ proceeds via the
Euler-McLaurin formula Y¢An)=XF{(—k)X
f®(k)IK ({(z)=Riemann’s zeta function). In
addition there are exp( —\/ﬂ ) terms. Altogether:

Si= 12T — 11235 =2 3 Ki(23)/ 25,
Ai=1

Sy=—172/Tr +23 Ko(23)

(z~s27z\/ﬂﬁ, Ky, (z) are Bessel functions.) Mini-
mizing Ag in /., r, gives

l.=R./(1+v),

I =2/(3+2»)}(R_+L_),

ro=L. /(1+¥) =R, /(1+v)?,
ro=[U/(3+20)][2L_ —R_/(1+»)],

so that we obtain the 1/R expansion

2r
g 2 1 fdo 1
Ag=g1+u[‘ /IR“<3ZR+027: 2(1+7)

X[R3/(1+v)+R% —2R. L,
—2(R_ +L_)2(1+V)/(3+2V)])] .

Since R+, L. all go like — 1/\/ﬂ , the large bracket
yields ¢, as calculated in ref. [8] (and stated above).
Let us now admit &' dependent gaps. Then (5)
receives a derivative term (2/1g)(dyr_)* from
\/gv(D 2¢12 plus similar and higher derivative terms
for all ., I, from higher loop diagrams — involving
{xx*y. The sums S,, are modified by a factor
(1 —cos(¥n)), where the sums with the cosines do
not have the [dn’s subtracted. This changes drasti-
cally the large-R limits. The leading behaviour comes
now entirely from the [dr’s and is

L_—-2Ky(z)/(1+v),
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L, —[2Ko(z) +4K,(2)/z—4/22| /v,
R, ——2Ky(2)/(1+v),
R_—[=1/32g —2Ko(2)]/(1+)

(z=0/Ig7) .

Hence, at any fixed-distance ratio 9 from the ends,
the deviations from the asymptotic gaps, r+, [+ are
exponentially small. Only at the ends there is a log-
arithmic divergence. In a proper lattice formulation
of the short-distance cutoff 4~! would have to bring
the value of p, precisely down to po=1. In the pres-
ent approximation, the solution overshoots.

The l/m terms are cancelled since the factor
(1—cos(¥n)) in f(n) deletes the {(0)f(0) term in
the Euler-McLaurin sries. The first correction is of
order 1/4. Doing the ¥ integral in (8) can give now
only 1/\/1; terms with no 1/Az correction. We
therefore find, up to this point, ¢,=1 for all ».

In order to complete the proof we have to make
sure that the coefficient of all the omitted higher
powers in 7., /, and their gradients do not have any
1/\/ﬂ corrections. This is somewhat tedious to
show. Basically it follows from the fact that the inte-
grals over all higher powers of K,(z) contribute to
order l/\/ﬂ and so do the integrals involving deriv-
atives of K,(z), which, to leading order in R.,,, all
appear in the form &,d. The next 1/R.,, corrections
carry, in all cases, two more powers in 1/R.,, so that
they cannot change the 1/R.,, term in the quark
potential.

This proves the universality of the number ¢, =1
for spontaneous strings of any normality ».
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