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We point out the existence of different phascs for strings with extrinsic curvature stiffness. These phases form at low tension in

the limit of infinite spatial dimension.

Strings with an extrinsic curvature stiffness, as
proposed recently by Polyakov [1] and the author
[2]*', are apparently a much better idealization of
the strings which bind quarks in QCD than the ordi-
nary Nambu-Goto strings. In the absence of a ten-
sion term, the classical action is scale invariant, just
as in QCD. In the limit of infinite dimension it can
be shown that fluctuations generate a mass scale. It
plays a similar role as the dimenstonally transmuted
coupling constant in QCD. It is observed as a spon-
taneously generated tension giving a confining
potential between quarks [4,5]. Moreover, contrary
to the ordinary string [6]., the potential has the
desired asymptotically free 1/R behaviour at short
distances [5,7]. At higher temperature, the tension
disappears in a thermal deconfinement transition
[8]. Recently it has been shown [9,10], always in
the limit 400, that if such a “spontaneous string”
1s supplemented with an additional Nambu-Goto
term of a certain (negative) critical size, 1t develops
an instability. The purpose of this note is to study
the phases which may be expected in this regime.

The action of the mixed string is

* Work supported in part by Deutsche Forschungsgemeinschaft
under Grant KI 256.

*! Our proposal was instigated by previous work on biomem-
branes by ref. [3].
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where & = (d/2)o and .o/, is the curvature action
for the zero-momentum configurations x, which are
not included in the path integration and which may
carry a conslant strain (with xocé)

We shall look at planar surfaces in the conformal
gauge g=p0,; and x;=¢', x§ =0 (a=2....,d) with all
fluctuating fields periodic in the interval &' (0,8...),
&2e (0,R.). For d—co, we can go to the saddle point
which, on symmetry grounds, has a space indepen-
dent p and A“=/4". Renormalization introduces a
dimensionally transmuted coupling constant A
(dimension —=mass?) in terms of which the extremal
action becomes

== %dRuxtﬁextg 1 (2)
with
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where 4, =/Aexp(v) and v defined so that M3
=(d/2)7,v/4x. This is to be maximized in 1 and
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minimized in p, with the result A=/, p=p=4n/d.
The total tension is M7, = (d/2)A,(1+v)/4n.

For v=0 we shall call the string purely sponta-
neous. For v— — 1, the string becomes critical (the
intrinsic area diverges with p~ 1/(1+vr) at fixed
MZ)). The tangent vectors of the surface fluctuate
with a correlation length ¢=1/m? =1/4,p. This is the
DeGennes persistence length [11]. The calculations
by David, Guitter, and Pisarski in refs. [9,10] have
provided us with the quadratic variation of g

87 g=(A,plAn) v (HM(-1d)v(S) ,

v(&) = (8pip, 841 1A, AR, ARG , (4)
with the matrix
G —iF —iF 0O
—iE A B 0
M=l _ir B ¢ of ()
0 0 0 0

and, for small P*=p*/m?,

G(p)x — P — P+,

AP) =i+ =P+ PP Ly— P+,
B(p)=i+ 5P —5P + ..,

C(P) =3+ P+ PP Ly—5 P +...,
D(p)=i-LPP+EP 4.,
E(p)=i(l+v)+ 4P — 5P+ ..,
Fp)=s(1+v)+3P? P+,

Lo(p)=In(P?). (6)

For v<v.~ —0,902, the upper 3x3 part of this
matrix develops a negative eigenvalue, g;. Placing all
stable variables at their extremum, the unstable mode
can be described approximately in terms of an effec-
tive lagrangian involving only 8p/4(&) which we shall
call p(&). We have verified that the polarization
properties of 1/ are irrelevant to the phenomenon by
checking that the instability occurs also if we restrict
A710 its trace (the unstable regime is only very slightly
shifted in p, see fig. 1). We can therefore express the
variation 8°g as 4,p/4r times 1 + v+ % with an effec-
tive lagrangian

£= Lo U-DpQ) ~hep’ O+ 1" D=
7
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Fig. 1. (a) The kinetic term (8) of the lagrangian (7} for various
vav.. Also plotted are the eigenvalues of the upper 33 part of
the matrix M (dashed) and the function G+ (4+28+C)~"
x (E+ F)? (dotied ). it governs the 3 p/7 fluctuationsif A7 isrestric-
ted to its trace (showing that the phase transition appears in the
trace part of A% alone). (b) The strucwure factor S(p) of
D.O-toluene-butanol-SDS-NaCl in the three-phase regime [12]
and comparison with ¢(p)~' of the spontaneous string {solid
curves) forvzw.

where
|
A B
@(p)=G(p)+(E,F)(B C) (E.F)
A B
=detM/[D-det(B C)]
=a,[p*/m® —pdiim* =3(v—v.)]* +a, (8)

with p3/m* =0.237, a=a(v—r.)=0.45(v—v.), a,
~0.171, and ¢, d being numbers of order unity. We
have omitted higher powers in ¢ and checked that ¢
is sufficiently small to justify such a truncation a la
Landau near the instability,
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By a rescaling of ¢ and the total £ (dropping the
overall factor in #) we can make c=1,d=1 and write

L=lplag(v—v) +a [ & /im*—piim?
—3(r—r)]le—ig* tiet, (9)

with a, of the order unity and a,/a;=0.38.

For »>>p,, the ¢ fluctuations of a surface can be
visualized in scattering experiments, where one sees
a structure factor S{p)oc ¢(p)~'. A behaviour of
precisely this type has recently been observed in
small-angle X-ray data of microemulsions [12] (see
fig. 1). There [13], the three-phase regime suppos-
edly consists of soap interfaces with small surface
tension. If further soap is added, the microemulsion
undergoes a phase transition into a great variety of
liquid crystal phases. It is thercfore interesting to see
whether similar things happen to the surface under
consideration upon lowering » towards the critical
value ».. At the mean-field level, the main candi-
dates for the lowest ground state are given by [14,15]

w(é‘)=wn( ;Z’leXp[i(kJGJr a,)]+C-C-), (10)

where the &, are equilateral #-angles of length || =p,
and «; are arbitrary phase angles.

The cases n=1 (=2), 3, 4 have striped, triangu-
lar, and square order, respectively. Inserting (10) into
the action, the effective lagrangians become

L, =1%ap’ —c,pr+idaen, (11)

with ¢, =0, ¢;=2//6, c=0, d,=3, dy=3, di=%
where we have set, in the second case, o) +a,+
oy=2m-integer in order to get the largest possible
cubic term which leads to the lowest energy. The
lagrangians %, and %, have a second-order phase
transition at a=0, i.e. at ¥ =v.. These transitions can,
however, not take place since before this happens, at
a precocious value a, =2¢3/9d;, =2°/3°, the lagran-
gian %, has a first-order transition into a state with
triangular order, where ¢; jumps from 0 to
3asle,=22/6/3".

For v < v, however, the striped state has even-
tually the lower energy. Indeed, for whatever cubic
term, a quartic term ;dp* leads to a ground state
energy — — sa°/d so that the energy with the smallest
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d is the lowest. Hence, at some v <y, there must be
a further first-order transition triangular—striped.
This happens at 2=0.24.

It should be noted that if d is very large but not <o,
the striped state is destroyed immediately by fluc-
tuations. In order to see this we allow for a space-
dependent phase «(¢&) in the ansatz (10} and cal-
culate from %, the leading gradient terms o
a (9% —4p, 1)« where d, acts parallel and 4, orthog-
onal to the stripes. The divergence of [d*p/(p}-+
4p,p3) is s0 violent (much more than in the 2D XY
model) that the order of the striped state is destroyed.
There remains, however, a directional memory of the
stripes. In this respect, the striped state behaves like
a two-dimensional smectic liquid crystal [ 16] which
by fluctuations is always carried into the nematic
order characterized by a director (an axial vector).

A similar procedure for the triangular case gives
gradient energies for «, (&) which describe the two-
dimensional elasticity of the triangular pattern. Fluc-
tuations will produce dislocations and disclinations
which can carry the system into a liquid (and pos-
sible a hexatic) phase [17], i.e., a disordered ondu-
lated pattern.

It thus appears as though a string with extrinsic
curvature can have a rich variety of interesting phases
which are certainly worth investigating further.
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