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We show that large spherical surfaces in Euclidean space time made of spontaneous
strings (strings with extrinsic curvature plus a spontaneously generated tension) have a
universal entropy P(R?) oc (R?*)¥®e™*™ R? in the limit of large dimensionality d. The
power of R is universal in the sense that it is independent of the model parameter v
(normality) which characterizes the amount of Nambu-Goto tension with respect to the
spontaneously generated tension (v = oo is the pure Nambu-Goto String).

Strings with extrinsic curvature stiffness seem to be an excellent representation
of the strings that form in the QCD vacuum and hold quarks together. The
curvature action is dimensionless and asymptotically free in the ultraviolet and
generates spontaneously a tension.'”*** This is why we call such strings
“spontaneous”.>* They are characterized by a parameter v= normality.** It
specifies the ratio between Nambu-Goto and spontaneously generated tension
(v= oo is the Nambu-Goto, v = 0 the purely spontaneous, string). At small
temperature and large distance, two important finite size properties of spontane-
ous strings have recently been shown to be universal in the limit of large
dimension d: the thermal deconfinement transition® and the Coulomb-like 1/R
term in the quark potential.>® Both are independent of v. Here we add one more
quantity to this list, namely the entropy of spherical surfaces of large R. They may
be viewed as the string version of the instantons of QCD.

For the Polyakov string with the action M?[d?¢\[g(0x°), the number of
spherical states has been shown’ to grow with the area by I'(R2) oc(R?)¢ ™ 29/¢
¢ ®* where A" is the short-distance cutoff. We shall find that for leading order in
d, the same result is true for spontaneous strings of any v.

Consider a background sphere of radius R, in the parametrization
x/(& ¢) = Res(cos pch™'& singch™'¢,th & 0,0,...) with the metric g, =
R2.ch™2&5,.
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Inserting this into the action with tension and extrinsic curvature stiffness

A4 =(d—2)/2) f d*&g[Mic + (1720 [(D*x°Y + A@x“9x" — g,)]]
(1)

(in which x4, g;, A%, are independent field variables, M, is the Nambu-Goto
tension, and 1/& is the bending stiffness, the tilde standing for a factor ((d —
2)/2)) and performing the integral over all fluctuations in x*(a = 2,...,d — 1)
[assuming that g; = pR2,ch &5, AV = Ag”, with p, A = const.] gives, in the limit
d — oo, the action A = ((d — 2)/2)4nR>., pf., With the free energy density

for = 4/28pR* + 1/@p + fy — (1/47R*) In (R’”) (2)

where f; = fi + f3 are the fluctuation corrections

f=1/4nR?) i 2!+ DIn[(( + 1) + AR?)/u*R*] — A/& (3)
=1

due to the trace log (1/4nR?) tr In (—D*(—D? + A)) with the zero mode removed.
Its effect is accounted for by the last term in (2) since it produces a volume factor
(LR)*? in the partition function Z = e~*. The action has to be evaluated at the
extremum with respect to variations in p, A at fixed R2, = R?/p.In order to calcu-
late the sums in (3), we add and subtract the regularized flat-space integrals

J’ d*g R _ _
In(g° +A) — A/a= —({A/4n)In (A/1), 4)
(2ny

with the quantity 1 being the dimensionally transmuted coupling constant of the
spontaneous string, as in Ref. 3. The difference between sums and integrals can
be performed using the generalized Euler-MacLaurin series

(Z - r dl) (+a)'hl +q) = D K=y =k h®©O) (5
=0 -q k=0

00

(with Riemann’s zeta function {(—zq)= D (n+qF = —B...(@)/(z + 1)
0

where B,(g) = Bernoulli polynomials). At very large R, fo, = M, —
(4/47) In (A/7) and the action is extremal at A = 1, = 1e", where v is obtained
from Mj3;=2,v/4n. The total tension is M2 = 1,(1 + v)/4n. At finite R, the
action is 4 = ((d — 2)/2)g,,, With
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i = 4R [, = R?Z, + (4n/ap)(2 + AR?) + Ago — AR*In (A/7)
+ Ag; — (1/3)In (A/u?) (6)
where
Ago = a, — (1/3)In (AR?),

Ag, = a, — (1/3)In (AR?) + AR*[In (AR?) — 1] + 2AR%*y + S|(AR?)

with
ay= —40(—1) + 1/2,
a; = —y/2+20(—1)—1/4+(1/3)In ﬁ{(—l)z ~0.16542114,
y ~0.57721566
and

S, (x?) = i{(zl + Dn[( + 172 + x*] — In(/ + 1/2)*] — 2x%/({ + 1)}.
=0
(7

The ultraviolet cutoff term —1/3 In [4/4?] removed by a counter term of the
Gaussian curvature type (1/2a)fd*&[gR so that a, — (1/3) In (A/u?) can be
considered as a finite constant, to be set to zero since it is irrelevant to our dis-
cussion.

Notice that g, has two terms —(1/3) In (R*x?), one from tr In (— D?) and one
from trln (—D? + A). If both were to survive the extremization process of large
R, this would lead to a doubling of the power of R? in the entropy. This is, how-
ever, not so, the reason being that i approaches its R = oo limit 4, with
corrections of order 1/AR? only. In order to see this, we note that in the limit of
large R, Ag; has the asymptotic behaviour (1/3) log (4/¢*) and g,,, becomes

Gir — R?A,v + (4m/ap)(2 + ARY) — (1/3) In (R*7)

— AR*In (A/7) + (1/3) In (A/1?) . (8)
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The extremality conditions
an/ap = AR/ (2 + AR [A,v/A + 1 — 2/34R?] 9
AR*A,v/A+ 1) —2/3 + 2/AR*+ 2 + ARY)[~In (A/2) — 1

+ In (AR + 2y + S;(x)] (10

give, in this limit, 4n/Gp— 1 +v — (6 + ¥)/3(1 + WAR?, /A, — 1 =1 —
(2 +1/3(1 + v))/AR? This shows that the large R behaviour of A has only 1/AR?
corrections. The leading R behaviour in (8) comes entirely from the tension plus
the fluctuation correction —(1/3) In (A R?) due to the 4 = 0 part of the trace log.
The —(1/3) In (R*/u*) term of the massive part Ag,disappears at large R just as it
would if A was an R-independent mass. The normality v is irrelevant to this result.
The entropy factor (R*)¥® has therefore the same universal power for all
spontaneous strings, with any admixture of Nambu-Goto tension.
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