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Abstract

We point out that the smectic–nematic phase transition may considered as a transition of a stack of membranes in 2qe

dimensions, in which the layers become so wrinkled that they interpenetrate each other are no longer distinguishable. q 2000
Published by Elsevier Science B.V. All rights reserved.

1. Introduction

It is often useful to study one and the same phase
transition from various points of view. In the absence
of an exact treatment, different approximate ways of
describing a system may give valuable insights into
complex phenomena such as phase transitions. A
good example is the superfluid phase transition in
three dimensions. It can be explained in terms of
phase and size fluctuations of an order field in 4ye

of in three dimensions, as a proliferation transition of
vortex lines in a Villain model, which in turn can be
reformulated as a complex disorder field theory cou-
pled to a vector potential as in the Ginzburg–Landau
theory of superconductivity, or as a transition in a
system of pure massless phase fluctuations, as de-
scribed by a so-called XY-model, which is a nonlin-
ear s-model on a lattice 1. Each approach has given

) E-mail: kleinert@physik.fu-berlin.de
1 All these descriptions are discussed in detail in the textbook

w x1 .

us important insights into the physics of the phase
transition. Similarly, a Heisenberg model of ferro-
magnetism can be described by a vector field theory
with quartic interactions in three and 4ye dimen-
sions, by a vector model on a lattice, or by an
Ž .O 3 -symmetric nonlinear s-model in 2qe dimen-

w xsions 2–5 .
It is the purpose of this Letter to point out that

there exists a new alternative way of looking at the
smectic–nematic phase transition, which supple-
ments the presently available descriptions by a model,
comparable in spirit to the nonlinear s-model ap-
proach to the Heisenberg model in 2qe dimen-
sions. In the past, the transition has been studied in
two ways. The first uses the Landau–De Gennes

w xtheory 6,7 which contains a complex field to de-
scribe the smectic order, and a vector field for the
direction order of the molecules. The critical expo-
nents of the phase transition are calculated in 4y´

w xdimensions. Initial difficulties 8 in explaining the
continuous nature of the transition in a certain range

w xof material parameters 9 have later been overcome
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w x10,1 . An alternative description invokes the statisti-
w xcal mechanics of line-like defects 11,12 which, as

in superfluid helium, can be formulated either as a
Villain like model, or as a disorder field theory of

w xthe Ginzburg–Landau type 13 .

2. Stack of membranes

In this Letter we propose a nonlinear theory for
the smectic liquid crystal as a vertical stack of
membranes, labeled by integer numbers ns0,"
1,"2, . . . , whose positions are parametrized by

aŽ .functions x j , z , with zsz sna. The mem-n

branes are assumed to possesses only a curvature
w xstiffness 14 . They are held at their average vertical

w xdistance a by quasi-harmonic forces 15–17 . In a
continuum approximation of the stack, we shall write
the energy as

1
2Es d zra d jr j , zŽ . Ž .H H

2a

=
2 22 i j aD x ql E xE xyd r qb N E xŽ . Ž .Ž .i j i j a

2.1Ž .
i jŽ .The Lagrange multiplier field l j , z ensures the
aŽ .intrinsic metric of the surfaces x j , z to be in the

Ž . a a Ž .conformal gauge g j , z sE x E x sd r j , z .i j i j i j

The derivatives E apply to the conformal coordi-i

nates j i of the individual membranes, and D2 is the
y1 2 aŽ .conformal Laplacian r E . The vectors N j , z

1 i j abc b c's g ´ ´ E x E x describes the normal vectorsi j2

of the membranes, and the elastic term proportional
to b ensures an average spacing between the mem-
branes in the normal direction. In a vertical stack, the
normal vectors N a point predominantly along the
z-axis, and we may simplify the model by approxi-
mating N a fz, hopefully without an essential modi-ˆ
fication of the physical properties to be studied.

3. Nonperturbative approximation

Consider a planar background configuration of the
stack x1 sj 1, x 2 sj 2, x 3 sz , and allow only forn

3Ž . Ž .vertical deviations x j , z szqu j , z at zsz .n
Ž .The vertical fluctuations u j , z of the membranes

are purely harmonic in the model, and can be inte-
grated out, leaving only u- and l fluctuations. These
will be treated in mean-field approximation, an ap-
proximation which would be exact if the membrane
were to fluctuate in a very large number of dimen-
sions.

In this approximation, we may assume the metric
g and the multiplier field li j to be constant andi j

isotropic,

li j slg i j slry1d , with lsconst. and rsconst.i j

This simplifies the result of integrating out the u-
fluctuations, yielding in the continuum the following

Žreduced free energy density fsFrATs free en-
.ergy F per unit stack area A and temperature T

1 d2q dv a
2 4 2fsr ln bv qq qlqŽ .H H2½ 2 2p2pŽ .

l l
y q 3.1Ž .5aT arT

where q and v are the momenta in j i- and z-direc-i

tions, respectively. The temperature T is measured in
natural units with k s1.B

In order to make the model renormalizable, we
generalize the z-dimension to ´ , and consider the
model in 2q´ dimensions with small ´)0. Then
the v-integral is finite in dimensional regularization.

Thus we apply the formula

d´ v aŽ .
2 2log bv qKŽ .H ´

2pŽ .
1 2 a´

´s G 1y´r2 KŽ .
´r2 ´ r2´ b4pŽ .

a´

´'h K , 3.2Ž .´ ´ r2b

Ž . i Ž . Ž 4to Eq. 3.1 , leaving a q -integral over f l ' q q
2 .´ r2 Ž 2 .1q´lq , which diverges like q . The integral

is conveniently regularized by a cutoff at q2 sL2,
whose magnitude is determined by the inverse lateral
size of the molecules in the membranes. By expand-

Ž 4 2 .´ r2 Ž 2 .´ing near ´s0 dimensions q qlq s q q
Ž . Ž 2 .´y1´r2 l q q . . . , we isolate the divergences.
The remaining integral over the subtracted part of
Ž . Ž . Ž . Ž .f l , which may be written as f l s f l y f 0sub
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XŽ .yl f 0 , can be calculated with the help of the
integral formula

` ynmy1dxx 1qx sG m G nym G n .Ž . Ž . Ž . Ž .H
0

The resulting free energy density is

aeh L2 ´q2 l´ 2 ´fsr q L
´ r2½ ž /1q´ 2b 8p

a´ h c ´ l l´ ´ 1q´ ´y l a y q ,
´ r2 58p 1q´ aT arTb Ž .

3.3Ž .

with

G y´ G 1q´r2 1Ž . Ž .
2c ' f qOO ´ , 3.4Ž . Ž .´

G y´r2 2Ž .
Ž .such that h c ´f1qOO ´ . The leading divergence´ ´

proportional to L2 ´q2 may be omitted since it can
be removed by a counter term in the form of a
surface tension, which is added to the initial energy

Ž .functional 2.1 to obtain a finite theory.
Note that for e close to unity, the theory is

nonrenormalizable since the fluctuations generate a
divergence of the form l2r´ . To absorb this infin-
ity, we would have to add a term Al2 to the initial

Ž .energy 2.1 , a term describing in-plane elasticity.
Minimizing f in r, and maximizing it in l, gives

the saddle point equations

1 1 1 h c l´a´
´ ´

ls0 or y sy
´ r2ž /a T T 1q´8p bc

3.5Ž .

and

1 T h c´ ´ ´ ´s1y qaT l a 3.6Ž .
´ r2r T 8p bc

where we have introduced the critical temperature

y1´ 2 ´a h L´
T s a . 3.7Ž .c ´ r2ž /8pb

The energy density at the extremum is

l
fs . 3.8Ž .

a

The l/0-solution is found in the high-temperature
phase, T)T , where the order parameter l is givenc

by

1re´ r28p b 1q´ 1 1Ž .
y1lsa y 3.9Ž .ž /a h c ´ T T´ ´ c

Ž .and 3.6 is solved by

T
y1r s´ y1 . 3.10Ž .ž /Tc

At TsT , the system undergoes a phase transition toc

the low temperature phase with ls0 and

T
y1r s1y . 3.11Ž .

Tc

Since r characterizes the ratio between intrinsic area
and base area, we see that the surface becomes
infinitely wrinkly at the transition. This destroys the
layered structure.

4. Physical properties

Ž .1r ´The free energy density fslra is A TyTc

above and ' below T , which is characteristic for ac

second order phase transition. The critical exponent
a governing the divergence of the specific heat near

< <yaT like TyT is as2y1re . Experimentally,c c
w xthis exponent is the same as in superfluid helium 9 ,

i.e., close to zero. This does not agree too well with
as2y1re for ´s1. Such a disagreement, how-
ever, is typical for this type of expansion: The

Ž .nonlinear s-model yields as2y3re for all O n
w xsymmetries 2 , which is negative at es1, and thus

much worse than our result.
The properties of the transition are better under-

stood by looking at the effective energy of long-
wave-length fluctuations. In the low temperature
phase with ls0 it reads

1 2 22 2E s d zra d j E u qb E uŽ . Ž . Ž .H Heff z2a

4.1Ž .

This is an approximate energy for the smectic phase
w xused a long time ago by De Gennes 18 . It can be
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derived from a gradient energy of a particle density
Ž .n j , z .

22 2 2Es d zra d j E qk n j , z , 4.2Ž . Ž . Ž .Ž .H H 0

by inserting a periodic layer ansatz for the ground
state density.

n j , z ;cos k zqu j , z .Ž . Ž .0

The wave fronts are smoothly displaced in the verti-
Ž . Ž .cal direction by u j , z . Expanding 4.2 in powers

of u and its gradients, and averaging over many
Ž . 2layers one finds 4.1 with b'4k .0

In the high-temperature phase, the effective en-
ergy becomes

1
Ef d zraŽ .H

2a

=
2 2 22 2d j E u ql E u qb E u , 4.3Ž . Ž . Ž . Ž .H i z

which describes, at long wavelengths where the cur-
vature term is much smaller than the others, the
elastic energy of an ordinary continuum in all direc-
tions, without preference of the z-direction.

During the phase transition, the undulations of a
layer change from a long-range algebraic correlation

Ž < <.in the transverse direction r' j

d2q dv a a e i qj

² :u j u 0 fTŽ . Ž . H 2 4 22p q qbv2pŽ .
a a 1

sTp ln r' 2pb

to a short-range correlation

d2q dv a a e i qj

² :u j u 0 fTŽ . Ž . H 2 2 22p lq qbv2pŽ .
a a 1

sTp .' 2p rbl

In the first case, the surface is smooth, in the second
case, it is so wrinkled that the layers interpenetrate
each other and become indistinguishable.

These are signals that the stack of layers has
entered a homogeneous phase which is anisotropic in
the third direction.

At this point we establish contact of this transition
with the nematic–smectic transition in liquid crys-
tals. For this we imagine vertical rod-like molecules

to be attached to the surfaces of the model. Then the
two phases of the stack of membranes can be consid-
ered as the layered smectic, and the direction-ordered
nematic phase of a liquid crystal.

5. Outlook

For a more complete description of the system it
will be necessary to include the transverse elastic
properties of the membranes and study the behavior
of the shear resistance near the transition. In addi-
tion, a vector field will be necessary to account for
the directional properties of the molecules on the
layers before and after transition.
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