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A lattice model is presented for the rotational stiffness of molecular crystals. In contrast to models with only linear elasticity,
dislocations and disclinations are independent. If / is the length scale of this stiffness, I show that for large /, melting proceeds via
two Kosterlitz-Thouless transitions. For smaller /, these move closer together, possibly changing their character, until there is

only one transition of first order.

1. Introduction

For two-dimensional melting of atomic point lat-
tices the KTHNY theory [1] predicts, under certain
assumption on the core energies of defects, the ex-
istence of two successive extremely smooth in phase
transitions. This prediction has raised controversies,
since molecular dynamics calculations have always
found a single sharp transition [2]. Wherever this
did not happen [3], this could be traced back to the
existence of a mixed intermediate phase at constant
volume [4]. The same thing was observed in lattice
models made to simulate the interplay of disloca-
tions and disclinations interacting via lowest gra-
dient elasticity [5]. They always have a single first
order transition [6] with an entropy jump per site
of As~0.2. Still, the theoretical prejudice for the two
transitions was so strong that they were distin-
guished [7] even when there was only one transition
[8]. A similar situation holds experimentally. Atomic
monolayers always show a sharp peak in the specific
heat. For higher coverage, the transition may be-
come continuous, but never as smooth as required
by the Kosterlitz-Thouless arguments [9]. Two clear
successive transitions have been found only in layers
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of liquid crystalline material [11]. Since the KTHN
arguments and the above lattice models do not apply
to these systems, it is worthwile to find a model which
is capable of describing such an experimental
situation.

2. The model

We set up a lattice partition function which con-
tains defects and their elastic interaction including
the strong gradient elastic energy {ul[9,(0,u,—
9,1,)1?=2ul*(d,w)? (u;= displacements). The pa-
rameter / characterizes the length scale over which
the system is stiff with respect to local rotations. Any
crystal with non-spherical molecules will have /#0.
Dislocations and disclinations are introduced via
corresponding discrete plastic distortions and the
model partition function reads

z=11(J @) 5 (-, )

{mij(x), mi(x)}

where f=a?/2n?k,T, the vector x runs over a square
lattice with spacing a, and
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E=3 Z (Vyj+vjyl 4nnls‘j)2

2
+ 23 (Tva-2m)
272
+—ZZ [Vo—r[2m;+V(n,—n) ]} . (2)

The symbols V, are the Ilattice gradients
(V.f(x)=f(x+i)—f(x)). The plastic distortions n,,
m, are integer. The superscript s denotes symmetri-
zation. The displacement vectors u;(x) have been
rescaled by a factor 2n/a (i.e. y,=2nu;/a) so that »,
A are the usual elastic constants.

By a duality transformation, this partition func-
tion becomes

Z—_-]_[<J d?y J dw J dz; j dr,)

X Y @[n;,m]exp(-pE;), (3)

{nij.mi}

where

ﬂE—Z{-l—I:—l(as--z _._V_as2>+a_21-2:|
P sla\" T+ ) 82
+ia,-j(V,~yj—e,jw—27tn,j)+‘c,»(V,-w—21tm,-)}

(4)

and @[n;, m,] is a gauge fixing factor needed to re-
move the degeneracy with respect to the integer val-
ued local defect gauge transformations [12]
n—n;+ViN—e; M, mi—»m;+ V.M,

Y-y, +2rN;, w-w+2nM. (5)

Integrating out the now independent y;, w, gives the
stress conservation laws,

V_7:1’7':;'=0 > vi"-'i =€;0; (6)

(with V,f(x) —f(x—i)). They are automatically en-
forced by introducing the stress gauge fields 4,, 2 and
setting

o-l:[:eijvak 5 1,-=€,-1th—A,- . (7)

(Actually, 4,, h are proper gauge fields only in three
dimensions, the gauge transformations being acci-
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dentaily lost in two dimensions. ) The energy has now
1

the form
_1} -
BE; = §[4ﬂ<1+u‘ A - +V(V,A,~)2)

SBIZ (Vih— €A% —27i (A, 5+h9):| (8)
where b, =€, V,n,—m, O=¢,V,m; are the integer
valued dislocation and disclination densities. They
are properly defect gauge invariant under (5), as they
should [13,14]. By integrating out the gauge fields
one finds the pure defect representation of the par-
tition function with an energy

BE,=px4r*(v+1) ¥ n(V-V)~2

2
+ﬂ><41t2§—[2 ¥ {@_(—V-V)“@

1

+V,-5,-[—V-v<1 - §VV>] V,b}}, )
where

is the defect density. A dual representation is ob-
tained by summing the partition function of (6) over
the defects. This forces A; and / to become integer
valued 4, and A, leaving a generalization of the
roughening model with

1 11—-» _
BE5=E§[1+1,( ,AJ)Z—Em(V,A,-)Z

at . _
+ 2_12 (th——fk/Al)2] . (11)

3. Phase transition

We now observe that the present model gives nat-
urally rise to two successive continuous phase tran-
sition of the Kosterlitz-Thouless type if the new
length scale /2> which characterizes the rotational
stiffness of the system is sufficiently large. Starting
point is the partition function (11) involving the in-
teger valued stress gauge A, A.

For very small §, both 4and /Aare squeezed to zero.
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If /2 is very large, however, i.e. if the system has a
large rotational stiffness, the squeezing of the # field
is relaxed and follows the effective partition function

az
Zx - == v 2) . 12
{zﬁ_}exp( sﬂlzzx: ( kh—) ( )

This is an ordinary roughening model. It is known
to have a continuous phase transition of the Kos-
terlitz-Thouless type if =, satisfies

4,07 /a*=2/n . (13)

For g of order unity, the prefactor a2/8f/? is so small
that the discreteness of # becomes irrelevant. It is
then a good approximation to integrate over 4 as if
it were a continuous variable. By decomposing

z (th—— fklx‘I/)2
=Y {(VilhA=(V-V)~'e;Vid)] (14)

- (V‘V)_lf/kvkva_i}z >

we see that the energy separates into the squares of
longitudinal and transverse parts so that, after the
h integration, the partition function becomes
effectively

A exp[— ——l-z (%I‘L(—V'V)A_i

A 4B \1+

1l1—v = -
=31 AV

a’ - < o
+EiAi(_v-V)-*(_viV,)Aj)]. (15)

At infinite /, the last term can be ignored and we re-
main with a discrete gaussian vector field theory. For
v=1 (incompressible material) the two components
decouple and there is obviously a phase transition of
the Kosterlitz-Thouless type at

28,72/, (16)

In the defect version of the partition function we shall
see the same universality class to prevail also for
v< 1. The transitions at large / are displayed graph-
ically in fig. 1.

In the opposite limit of small /, the system has only
a single first order transition at
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Brar(1+v)~0.815. (17)

This is the first order melting transition discussed
extensively in refs. [5,6]. Here it arises since, at small
1, the third term in (11) forces the vector field A, to
be equal to A} = —€,,V,// so that the first two terms
become the laplacian roughening model [13] with
the associated discontinuous transition [6,8] in it,
the fields 4 and 4T become simultaneously rough.

For g far above this transition, the effective par-
tition function is

2
z= 3y exp(-— # Y (Vihi- ek,A‘,)2> . (18)
{h, A1} x

It looks like a Villain model in which 4 plays the role
of the phase angle and ¢,,4, that of the jump number
n;. There is, however, an important difference: /4 are
integer numbers. A duality transformation shows that
Z is equivalent to a sum

2
Z= 3 exp(—2B1—24n22b?(x)> (19)

{6i(x)} a x
Since 4 are integer, there is no constraint V;5,(x) =0.
For this reson there is no phase transition. If Ain (18)
had been a continous variable, the ensuing con-
straint V;,(x) =0 would have led to a Kosterlitz—
Thouless transition at

 ~1/327i2 (20)

in which the A4 fields proliferate.

In fig. 2 we have illustrated the properties of the
two phases arising for small /. The sequence of tran-
sitions can also be studied in the defect representa-
tion of the partition function involving (9). For large
{, the disclinations & are frozen out and only the dis-
locations can be excited. For v=1, the effective ac-
tion is

zZ= Y exp(—-Zﬁ

{bi(x)}
X47t22b_i(x)(—v'v)_lb_i(x)>- (21)

This is the partition function of two independent
Coulomb gases with a Kosterlitz—Thouless transi-
tion at

48, ~2/m, (22)
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h#0, A;#0 6x0, b0
roughening defect
picture picture

Fig. 1. Schematic characterization of the three phases for large /. The left-hand side indicates the field configurations in the roughening
representations (11) (~0 smooth, # rough), the right-hand side indicates the defect excitations as deduced from the defect represen-

tation of the partition function (9).

6+0, b#0

—Pex1
first order transition
6~0, b;#0

h~0, A;~0
Brar=1-
T - -
E#O, A,‘z—f,‘jth_?éO
Buxa?/ P~
h#0, A;#0
roughening
picture

Py’ /P
no transition
6~0, b=0

defect
picture

Fig. 2. At small /, there is only a single first-order melting transition at = 1 where 4 roughens or the defects & proliferate in a background

of random b, as fields.

which is to be identified with the roughening tran-
sition of the /4 field in (16). For v# 1, the long-range
forces between the dislocations are modified by a
factor [2+ (14 »)]/4 (see eq. (9)) which enters on
the left-hand side of (22). For finite /, the longitudal
mode is massive and does not contribute to the crit-
ical limit, so the factor becomes (1+v)/4.

For small S~ a?/1? the effective partition function
is

2
Z~ Y exp(2131—241:2
(6(x)} a

XY é(x)(—V-V)—‘é(x)) . (23)
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It represents a Coulomb gas with a Kosterlitz—Thou-
less transition at

4Bel%/a’~2/x . (24)

This is the defect version of the roughening transi-
tions (13). See again fig. 1 for a characterization of
the phases.

Consider now the defect picture at small /. For g
of order unity, the & and V.5, terms in (9) can be
dropped and the effective partition function is

Z= Y exp(—ﬂ

{fi(x)}

Xan?(1+wv) Y n_(x)(—V-V)—Zn_(x)) . (25)
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This has a first-order phase transition at
B,(1+v)=~0.815 (26)

corresponding to (17) which is again the melting
transition of the lowest gradient model found in ref.
[6]. Another phase transition might have been ex-
pected at large S~ 1//, in which 7 is frozen to zero
so that @ is equal to — ¢,,V,5,. The second and third
term in (9) can be combined and give an effective
partition function

12

Z~ Y exp<—2ﬂ——241t22b_,2(x)> (27)
{bi(x)} a x

just as in (19), with no phase transition, due to the

absence of the constraint V;,(x) =0 and a would-be

transition at

By=1/32nl%. (28)

The characteristics of the two phases as seen from
the defect point of view are shown in fig. 2.

These considerations suggest a phase diagram in
the (B, I?) plane as sketched in fig. 3. There are def-
initely two Kosterlitz-Thouless transitions for large
l. For decreasing /, the universality classes probably
remain the same unless the transition becomes of first
order. It is conceivable that there is a tricritical point
on the way to lower /> where this happens. At any
rate, the two transitions move closer together. At
some /, they merge into a single line which at /~0 is
certainly of first order. Probably it remains discon-
tinuous up to the merging point.

40, Aj»0
©-0,b=0

L2
Fig. 3. Phase diagram suggested by the three known transition
points found in the present discussions. It is not clear where the
tricritical point lies at which the first-order transition line be-
comes of the Kosterlitz-Thouless (KT) type. The dashed line
indicates the would-be transition (20), (26).
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4. Conclusion

The model presented in this paper shows that the
rotational stiffness found in two-dimensional crys-
tals with large molecules can give rise to two suc-
cessive defect generated phase transitions of the
Kosterlitz-Thouless type. The model is hoped to ex-
plain the melting phenomena found in layers of lig-
uid crystals. It should be noted, however, that such
layers have a further degree of freedom, the out of
plane modulations, which have been ignored in all
studies, including the present one. They may well add
a further transition [14,15], or modify the others.
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