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Tangential Flow in Fluid Membranes.
Absence of Renormalization Effects

H. Kleinert!'
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The effect of the tangential flow, in fluid membranes, on the renormalization of
the curvature elastic constant x is studied and it is shown that the softening of
x when averaged over increasingly short distance scales is the same as for ideal
surfaces carrying no material. This is in contrast with a recent claim by Forster.
The physical and formal differences in the two treatments are pinpointed.
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In a recent note, Ami and Kleinert!"? showed that the short-wavelength
fluctuations in membranes with arbitrary elastic constants pu, A lead to the
same softening of the extrinsic curvature stiffness as in ideal membranes?’
in which the material particles are allowed to rearrange themselves freely
within the surface. The short-distance renormalization is given by

1 = Ko — (¢/2)(1/47) In(g 20 /d20n) (1)

with ¢ =3, where ¢_! is the short-distance cutoff and ¢, the longest

distance over which the fluctuations have been integrated out. The number
¢=23 has by now been obtained in various ways.*>’ It disagrees with
Helfrich’s original'® and final result,'”’ which is ¢ = 1.

In a recent note, however, Forster'® argues that the almost incom-
pressible fluid nature of the membrane material would lead to Helfrich’s

! Institut fiir Theoretische Physik, Freie Universitidt Berlin, 1000 Berlin 33, Germany.

2 Recently, it has been argued that the infrared divergences caused by elasticity renormalize
the curvature energy at long wavelength.?) This effect is unrelated to the question discussed
here and does not change the argument. In fact, it is an effect linked in an essential way to
shear elasticity and vanishes for a fluid membrane.
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number ¢ =3 —2=1 after all. Actually, there is a sign error in the addi-
tional term found by Forster, so that, if his arguments were valid, his value
of ¢ would really be ¢ =3+ 2=5. This trivial error will, however, not be
of concern here, but rather the theoretical basis of his calculation. Since ¢
enters directly into various observable quantities, such as the size
distribution of spherical vesicles,*'? it is important to know its precise
value.

Forster takes recourse to the most natural way of constructing the
measure of a classical path integral, based on the canonical formalism of
the time-dependent problem. The path integral is simply the product of
the integrals over all canonical conjugate variables at each time. For a
membrane which is a perfect fluid along the surface x(&, t) and performs
small fluctuations around a smooth background configuration x,(&) which
is in stress equilibrium and has a uniform mass density p,, the total kinetic
energy reads

Evin=(po/2) | d3¢ gi2(9 +4,-¢) (2)

where g, is the background metric J;X, J,X¢, &o 18 its determinant, and v
and 1’ are the normal and tangential displacements. The free part of the
action 1is

Ay = J dt {_ij dzst g(l)/z(‘.’Pv + flpz')

+ (Upo) [ ¢ g2+ 22} 3)

and the quantum mechanical path integral is to be taken with a measure

[ Du=TIT1{[ @ [ @ [ o [ Lapjmrd} @

where []. runs over some infinitely fine grated parametrization lattice and
[T, over a grated time axis, continued to imaginary values t— —it for
quantum statistics. As far as the present problem is concerned, we may
write the extrinsic curvature part of the energy for small displacements
from x,(&), including the one-loop corrections, effectively as follows''":

Ecunv=(x/2) [ d°¢ glP[(D*)* +(3/2) C3vD™V] (5)

where the covariant derivative D is done in the background metric g, and
C,; is the extrinsic curvature matrix assumed to be almost constant (using
the notation C, = C,,'). The reparametrization invariance causes t' to drop
out.
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In the original calculations for an ideal membrane, the path integral
over v led to a fluctuation energy

T/2 tr In(S2E,,,,/ov v)
— (7/2) tr In[D* + (3/2) C2D?]
~ (T/2) tr In D* + (T/2) tr[ — (3/2) Co(1/— D?) Cy ] (6)

and thus directly to the thermal softening law (1).
Let us now look at the possible changes brought about by the elastic
properties within the surface. The elastic energy reads'"’

E,= J' d?¢ g(l)‘/z[,u(uij_ %51’/141[)2 + (K/2) u/?] (7)
where u, K are the elastic constants and
u,=D;t,+D;t,—2Cy;v+D;vDv+ --- (8)

is the strain tensor, obtained by expanding the metric g, around the equi-
librium background configuration (u/,= g, g, — 6/,). For our purpose, we
only have to keep the first three linear terms t' and v. The full quantum
partition function is given by the path integral

Z:J\Dluexp{_'cfo_fdt (Ecirv+Eel)} (9)

The thermal partition function is obtained via the classical limit, doing the
integrals (5) for time-independent functions only, thereby dropping all
kinetic pieces in .o4, and obtaining an overall factor 1/7. This gives

Za=11 {j dvfz)%"j (dp\./zn)f [dzpr/(27t)2]}

S

X eXp {(I/T) |:_(1/2p()) J dzé‘: g(l)z(p\z/z + pf/z) - Ecurv - Ee]:|}

(10)
after which the p integrations lead to

ch = ]j |:j dV4 g(l)/2 j dzrig0:| exp[ - ( 1/Yw)(Ecurv + Eel)] (l 1)

This was the path integral used in ref. 1 to show that the elastic properties
do not change the short-distance renormalization of the ideal membrane
result in Eq. (1).
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Let us now turn to Forster’s argument. He takes the incompressibility
limit K — oo so that (7) leads to a J-function constraint for u, enforcing
D,t'= Cyv. He chooses the rotation-free solution

t'=(1/D*) D'C,4v (12)

inserts this into the kinetic energy (3), and arrives at a Kinetic energy for
v fluctuations

Eyin = (po/2) | d*€ gl {7 +VC,[1/(— D] Cy¥) (13)

where the time derivatives of C, and D? vanish for a static background
configuration. Assuming a smooth background, he is allowed to ignore
space derivatives of C,. The further discussion is then based on the action

'Q/():J(h‘ {f (2]26 g(l)/z[_i‘)pv + (1/2p0) p\A 71pv] + Ecurv} (14)

where A4 is the functional matrix
AL, &) =0%(E—¢) + Co(E)(1/—=D?)E, &) Co(E') (15)

Going to the classical limit and integrating out p,. gives the effective
measure

]‘[ (j dv j dp\,/27r>

=11 (J dv g(‘)/“) exp{(—1/2)trIn[1+ Co(1/—D?*) Cy]} (16)

Expanding the trace log increases the 3/2 in Eq. (6) to 5/2, thus leading
to the number ¢ =5 in (1), as a consequence of the incompressibility of the
membrane.

What is wrong with this argument? For a comparison, let us go to
the classical limit starting from the proper quantum partition function
(10). For now, we shall ignore the shear distortions. Integrating out the
canonical momenta and doing a quadratic completion in the t’ variables
involving t% and K(D,t'— C,v)?, we see that the kinetic piece of v becomes

(po/2) [ di {d*E gl3[1 = v>Co(2} +0°D%) ' CyT¥) (17)
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where v = (K/p,)"'? is the velocity of compressional sound waves within the
surface. The operator between the v’'s can be rewritten as vBv, where B is
a functional matrix

B=1—02Cy(32+12D?) 'C, (18)

Beside this, the integral over t’ yields the entropy for the sound waves,
which i1s a purely intrinsic quantity and influences only the Gaussian
curvature energy. So it is of no concern here. Adding to (18) the extrinsic
curvature energy and doing the path integral gives the partition function

exp (~(1/2) ¥t n{wil1 + 0 Colw} — D) ' C,]

n=0

+(D?)?+(3/2) C2D?} + (1/2) Z trilna);’;> (19)

n=1

where w, are the Matsubara frequencies 2nn7T and the tr. is taken only
with respect to the & variables. For high temperatures, all frequencies n # 0
are so large that the remainder in the trace log of (19) is irrelevant."'®’ The
n=0 term gives the classical partition function which is the same as (8),
thus confirming the previous result of ref. 1.

The place where Forster’s treatment deviates from this canonical
procedure can now easily be pinpointed. His aim is to impose the
incompressibility limit from the outset. Within the canonical treatment, this
amounts to taking the limit v — oo in all w? terms for fixed n, so that they
become w?’[1+ Co(—D) *C,]. We see immediately that this is not per-
missible. No matter how large v, the w? will eventually exceed —v2D? and
it is only due to this feature that the sum converges. In order to enforce a
convergence after all, Forster had to modify the path integral by a factor
det[1+ Co(—D) *C,], which he did with his extra term in (15) and
which led to his result (16). Thus, we see that his result is based on an
extreme unphysical incompressibility limit. In this context, we should note
that even though one speaks of a membrane as an almost incompressible
two-dimensional viscous fluid, K is still small enough to justify the classical
limit at room temperature (i.e., its Debye temperature lies below room
temperature). Indeed, with the typical modulus of compression,
K~ 450 dyn/cm, even for a low density p,= 100 m,,//&2 (m, = atomic mass
unit), the sound velocity is v 2200 m/sec and the thermal energy Tk at
room temperature, 3 x 10 '*erg, is much larger than the energy of the
shortest possible waves ¢, ~2n/A, which is UG max = 2% 10 " erg. This
shows that an extreme incompressibility limit makes no physical sense.
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