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We specify the fundamental path integral identities in phase space which govern the thermal fluctuations of superflow and
vortex lines in superfluids as well as of stresses and defects in solids. The key role is played by two mutually dual gauge field
systems. The identities are extended to comprise the full fluctuating differential geometries of the gauge systems.

The fluctuation arena of quantum mechanics and quantum statistics is defined by what we shall call a
Sfundamental phase space identity:

1= de (X't |xt)y= J @xj%lfexp(ij-dtpx)
14

Eji—iw‘t’lposJ@xj%exp(—i]dtpx). (1)

t

It is the path integral equivalent of Heisenberg’s uncertainty relation [j, X]= —1 in the operator language of
quantum physics. There it specifies the Hilbert space in which the state vectors evolve. Arbitrary quantum
systems are described by subtracting, from the exponent, an imaginary time integral of the total energy
ifdt [K(p)+V(x)] so that it becomes i times the classical action. Then, by dropping in (1) the left-hand in-
tegral [dx’ or [dp’ /2=, one obtains the quantum mechanical amplitudes in the x or p representations. By plac-
ing under the integral a d-function , d(x—x’") or 2nd(p—p’), thereby making the paths in the action periodic
in t' —¢ and by continuing ¢' — ¢ to imaginary —i/kg7, one obtains the full quantum partition function of the
system at temperature 7. (fzz1}kB are the Planck and Boltzmann constants.) The phase space identity (1) is
therefore truly fundamental in quantum and statistical physics and fully deserves its name.

The purpose of this paper is to present similar identities also for the classical statistical mechanics of fluc-
tuating superflow and vortex lines in superfluids and of stresses and defects (comprising dislocations and dis-
clinations) in solids. They involve two mutually dual gauge field systems, one for the superflow or the stresses,
and one for the vortex or the defects lines.

Let us begin with the simpler case of superfluids where the fundamental phase space identity reads

1= T b, T @ T @y?cb[mexp(if@x [b,-(aiy—ys-’)]). (22)

Here y is the phase variable of the superfluid condensate, b; is the canonically conjugate superfluid current,
and y? is what we may call (in analogy with the defect nomenclature below) the plastic deformation of the
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phase distortion [1,2] #'. It carries the information on the ensemble of vortex lines. It is a gauge field called
vortex gauge field. The associated gauge transformations move Volterra sheets through space at fixed bound-
aries (which are the vortex lines) and read

yP5yP+9,N. (3a)
They can be absorbed by a shift in the phase variable
y—y+N. (3b)

The functional @[] serves to fix a convenient gauge, for instance 8 =0 (axial gauge). Integrating out the
y fluctuations leads to the conservation law of superflow

d9,b;=0, (4a)
which suggests introducing a gauge field of superflow, a;, via

b,=€;0,a;, (4b)
with b, being invariant under the superflow gauge transformation

a,—a;+0,4. (4c)

We therefore can go over to a double gauge field version of the identity (2a)

1= J. Pa, Vla;] j Zy? P[yP] exp(—i J d3x bl-y}-’) , (2b)
where ¥[a,] is a gauge fixing functional of a,. A partial integration brings (2b) to the form

1= J Day wlai] J Gy? P[y?] exp(—ijdx3 a,-li), (2¢)
where

[i=€;0,y° (5a)

is the gauge invariant curl of the vortex gauge field. It satisfies the vortex conservation

d,1;=0 (4b)
and describes the vortex density of the superfluid. One can go one step further and rewrite (2c) in complete
duality to (2a) as

1= j Pa, Pla] J@l,f 90exp(i jd3x (ai_a,.e)li), (2d)
where the auxiliary 6 integration enforces the vortex conservation law (4b). The full partition function of the

superfluid with vortex lines is obtained by subtracting in the exponent 1/kpT times the energy of superflow,
the leading term being

BES=§Jd3xb%. (5a)

In the double gauge version (2b), we might also subtract an extra core energy of vortex lines

ﬂEV=—§ﬁj dx, 12 . (5b)
*! For a detailed presentation and further references see ref. [2].
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If the field system is placed on a lattice and the vortex gauge field yP takes only discrete values (=integer
multiple of 27) the resulting partition function becomes the well-known Villain model of the superfluid phase
transition, which is known [2,3] to describe correctly the entire critical regime of superfluid “He [3].

We now turn to solids. If the molecules are small and there is little rotational stiffness, the fundamental phase
space identity reads

1= J .@a,-jj @uij Du®, ®[uf] exp(i j d3x a,-,-(a,-uj+ajui—2u3)> , (6a)
where o, are the stress and ; the dislacement fields, and u} is the plastic strain field. It is a defect gauge field
with the defect gauge transformations

ub->ub+9d,N;+9d,N;, u—-u;+N. (7a)
Integrating out u; shows that stress is conserved,

3,0,=0, (8a)
so that there exists a stress gauge field y,; with #

0y = €it1€jmn Ok O mXin (8b)
invariant under

Xin—=Xin+ 0,4, 09,4, (8c)

This permits rewriting (6a) in the double gauge form [3]

1= J Dy Plag] J 2uf, P[uf)] exp(—i J d’x al-juf-}) . (6b)

A partial integration gives

1= J dyy Playl J guf; Pluf) exp(—i J d3xx,-,»n,~,-> , (6¢)
where
nij = eiklejmn akamu?n (73)
is the defect gauge invariant defect density [4]. It satisfies the defect conservation law
din;=0. (7o)
If we subtract in the exponent the leading stress energy
-4

SR T O G S S |

ﬂES_ kBT\[dx(GU 1+V611)9 (8)

where u is the shear modulus and » the Poisson ratio, the partition function describes ensembles of defects
and their proper long-range interactions in the continuum approximation. If desired, we may also introduce
extra core energies for the defects by terms quadratic in # in analogy with (5b) for vortices. By placing the
partition function on a lattice, and letting n% be integer multiples of the lattice spacing, we obtain the simplest
model of defect mediated melting [5].

2 For a review of the use of the stress gauge field and its its history see ref. [4].
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If the molecules in the solid are large, there is rotational stiffness and we have to extend the field variables
by the angular degree of freedom w; = j€;,(d,4,—0du;) and its canonical conjugate 7;;, the torque stress [6].
The fundamental identity reads

= [ 0, [ 2, [ au, [ 70, | 285 [ 20y 0185, 03

X exp(i J d’x [0,(0,u; — € — B5) +i1;(9,00; — 9F) ]) , (9)
where #% and ¢ are the plastic gauge fields of dislocations and disclinations. The defect gauge transformations
are

P B +0,N;—€eyu My, 05-05+d,M;,, u—»u;+N;,, w—-w+M,. (10a)
Integrating over u, and w; gives the stress conservation law
0,0,=0, 0,7;=—€u04. (10b)
They are solved in terms of the stress gauge fields Ay, hy;,
Oy =€u0k Ay, Ty=€x0,0,+bA—A;, (11a)
with the stress gauge transformations
hj—h;+0,&—epde, Ay—A;+3.4;. (11b)

Using the stress gauge fields, the fundamental identity (9a) takes the double gauge form

1= f @haf ZA; Vhy, Ay J Qﬂ}jj 205 D[S, ¢7) exp(i J &x (0,85 +1,0% ) . (9b)
A partial integration leads to the alternative exponent

i J d*x (A,a+h,0;) , (9c)
where

=€ 0, B0+ 0,00 — 00, 0= €4,0,0% (12a)

are the defect gauge invariant dislocation and disclination densities with the defect conservation laws
d,0=— jk[ekla a1611'=0 . (12b)

By subtracting in the exponent a stress energy (8) plus terms quadratic in 7;, we obtain the partition function
of dislocations and disclinations with their proper long-range interactions [7]. If desired we may also subtract
extra core energies quadratic in the defect densities. After being put on a lattice, with discretized plastic gauge
fields, this partition function has recently explained the two step melting process in two dimensions at larger
angular stiffness [8].

The fundamental identities can be generalized to a non-linear differential geometric description of dislo-
cations and disclinations [4]. In the neighbourhood of each point in a solid, with an arbitrary parametrization
x', we introduce locally orthonormal non-holonomic coordinates [9] dx*=dx’A?, so that the metric is g;=h" A,
(with the indices «, f being contracted via 7,5=044). They serve as a local reference frame without dislo-
cations. The dreibein fields 4% convert tensor indices from i to « and back. The covariant derivative of a tensor
tia 18 Ditig=0tiu— Ity — AjoPt;s where I'*, A,,” are the ordinary and the spin connection. The curvature tensor
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is the covariant curl of I" or 4, e.g. Ry ®=h*h?R;'= (8.4~ 3;4,— [A;, A4;]).”. The torsion of the space is
Sf=3(T}-T;*)=~1h (“Dh*~"*Dh%) where “Dh%=Dh%+A, "‘h” The geometry allows for local
translanons under which

Opx®=x*+E%, Oph® =D& — (Ag7—2857)E2, (13a)
while 4,7 transforms like an ordinary tensor

Ortin =60 ti+ (9,E) thee - (13b)
In addition, there are local rotations with antisymmetric @,

01 Ai’=D,wo", Sphia=0waPhis . (14b)

The fields ha, and A4,,” carry the information on the defects. They are the generalizations of the plastic gauge
fields B, ohf=0%¢€n?/2 of eq. (9).

Let us contract the curvature tensor and form the Einstein tensor G,;=R;—1g,R,* as well as the Palatini
tensor Sy, =2(S;+8uS;'—giSi'). They are the generalizations of dislocation and disclination densities
0= O€iif 2, 65

Wy = Szj,k, O =G, . (15)

They coincide with the canonical energy momentum tensor and the spin density of the gravitational field in
general relativity [9]. The Bianchi identities, which in general relativity ensure energy momentum and angular
momentum conservation of the gravitational field [2,9], guarantee now the conservation of defects as follows
(generalizing (12b)):

D;reaiz - 2Siay07i_ %A iﬁVRai/jy’ DTa iaB= gaﬂ_ Hﬂa 5 ( 16)

where D} =D;—2S;/. Let us choose a specific local set of dx“ coordinates, say dx%, by fixing the defect gauge
(for instance h®;=0%;, A3,”=0). The distorted crystal configurations may be parametrized by a total dis-
placement field #*(x’). Then the fundamental phase space identity of a solid with dislocations and disclination
reads

1= f QZJC,"J @‘ri"ﬂf u” J @waﬂj ,@h“,-J‘ DA DM, A"

X exp(i [ dx /& 102/ (Dt 0 = (4= 25, 0P =) 4 (Do — 4,P) ]) : (17)
where the conjugate variables o, and 7% are again stresses and torque stresses, as in (9a) (which is obviously
a linearized version of (17a) ). Integrating out #® and w,” gives the stress conservation laws (generalizing (10b))
Dtoy'=—-28,70,'~ 312, Raigy, D*t"*3=0%p—05*, (18)

which have the same form as (16) for the defect densities. Notice that the stress gauge transformations (13a),
(14a) are absorbed by the corresponding transformations of the displacement field

Spuc=E£%, SLu=wu’, (19)

making (17a) defect gauge invariant. The crystal forces are now introduced by subtracting, in the exponent,
an elastic energy, such as [6-8]

Ey=iy d3x\/§( 12—— 0‘2) g@lﬂd%\/ér Byl g (20)

where o/ is the symmetrized part of 2%0,/. We can also add a similar term quadratic in the defect densities
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@45 and G, to account for extra core energies. In this way, we obtain a complete non-linear gauge field de-
scription of defects with their correct long-range forces.

As before, it is possible to express the stresses in terms of stress gauge fields which obviously play the same
role for the stresses as A, 4,,° do for the defect densities. This leads to the non-linear extension of the double
gauge theory (9b). Moreover, due to the identical form of defect and stress conservation laws (16) and (18),
one may want to consider the gauge theory of stresses as defining the differential geometry of the space, with
the defects being the extra matter fields. The interpretation of the stress metric in this geometry is, however,
not clear, so we shall refrain from presenting an explicit construction.

The fundamental phase space identities presented in this paper make it possible to study arbitrary ensembles
of fluctuating superfluids and solids with the associated defects. It should be kept in mind, however, that a
proper description of the most interesting aspects, the phase transitions, requires the generalization of the dif-
ferential geometry to a discrete difference geometry, as in the lattice models studied in refs. [5] and [7].
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