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We present a systematic perturbative calculation of the static quark-antiquark potential of stiff
strings up to two loops. Our result is valid in any number of dimensions d. In particular we find
that the string tension M7 is renormalized as follows: M*=Mj[1+1(d —2)ao/4m)1
+4mL)+ ;(d —2)(d —1)(a,L)?], where ay is the inverse stiffness of the string and L the logarithmic
divergence L =(1/4m)In(A2/u?). At large distances, not only Liischer’s 1/R term but also the
1/R? term is found to be independent of the coupling strength. \

I. INTRODUCTION

The picture that quarks are held together by tubes of
color-electric flux has been idealized by Nambu' by for-
mulating a string model of hadronic forces. In space-
time, the string is supposed to follow the Nambu-Goto
action?

Ag=M} [d%vy , (1.1)
where M} is the bare string tension and 8i; =9;xH3;x*
(i,j=0,1;u=1,...,d) is the intrinsic metric induced on
the two-dimensional world sheet, parametrized by x*(£).
Several of the physical properties of such a world sheet
are in agreement with what is expected for a flux tube.
Unfortunately, however, the quantum system associated

with this action has also many undesirable features such -

as ghosts, tachyons, and an imaginary static potential be-
tween quarks when the distance becomes smaller than
some critical distance. In an attempt to avoid some of
these problems, Polyakov® and one of the authors* have
added to the action (1.1) an extrinsic curvature term

A,=(1/2a,) [ d%Vg D*x+D*x* (1.2)
where a, is the inverse bending stiffness and D? is the La-
placian in the space with metric g;;(£). The resulting to-
tal action 4=A4,+ A, leads to a string theory with
several interesting properties: At the classical level 4, is
scale invariant, but quantum corrections generate spon-
taneously a tension,>”> which is the dimensionally
transmuted coupling constant of the theory. This con-
tributes to the linear behavior of the static quark-
antiquark potential at long distances.*” The nonleading
1/R term in the potential has Liischer’s universal
size® 1% —(d —2)m/24R. The extended action naturally
gives rise to objects which can be identified as glueballs,
with a mass expected from Monte Carlo simulations of
lattice QCD (Ref. 11).

For high stiffness 1/a,, the static potential can be cal-
culated at any distance.”!° For short distances, the po-
tential has the proper asymptotic-freedom behavior
« 1/R as expected from QCD. Even the quantitative be-
havior is apparently correct-—the prefactor has twice
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Liischer’s value in agreement with fits to the potential in
the spectrum of the J /¢ family.” 12

Up to now, this last and important result has been ob-
tained in a calculation which employs two limits: that of
d — » and small coupling. Since it is an experimentally
observable quantity, we believe it is desirable to know the
answer also for finite d. For this it is necessary to use a
different technique than that in Ref. 10. In fact, those au-
thors did not proceed very systematically. Initially, they
used a saddle-point approximation, good only for large d.
Later, when it became necessary to calculate certain trace
logs involving space-dependent gap functions, they could
no longer exploit the full power of the large-d expansion
and had to resort to an additional perturbation expansion
in the coupling strength. Obviously, once a perturbation
expansion is used, there is really no need for applying the
saddle-point approximation and the large-d limit in the
beginning.

The purpose of our paper is, therefore, to avoid a
mixed approach and to present a systematic perturbative
calculation, in which only the limit of small coupling is
required. The advantage of it is that it is valid for any di-
mension d and can easily be extended, at least in princi-
ple, to higher loops.

For the benefit of the reader familiar with the earlier
works we use a notation close to Ref. 11 and as close as
possible to Ref. 10. The organization of the paper is as
follows: In Sec. II we fix the gauge by using the Gauss.
map or ‘“physical” gauge where only the transverse u
fields survive. The action is then expanded up to
quartic-order terms in the u fields. Section III recalls first
the known renormalization of the coupling constant and
the string tension and then goes beyond this by calculat-
ing the two-loop renormalized string tension stated in the
abstract. Section IV is the main part of this paper and
the full static potential is obtained for all distances, in the
weak-coupling regime, up to two loops. The renormal-
ized quark potential is given in Sec. V together with its
large- and small-distance limits. We also display the
finite-size correction of the correlation functions
(u;(r)u;(r)) and their large- and small-distance limits. A
brief discussion of our results follows in Sec. VI. Finally
four appendixes provide some details of the calculation.
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II. THE ACTION of it, the metric is given by
Our starting point is the combined action®* =§;;tu;'u (2.4a)
A=M} [d%Vg +(1/2a,) [d*% Vg (D%# . (2.1)  andits inverse
The Laplacian operator D? reads explicitly gi=(1/g)[(1+u})sV—u; u i1, (2.4b)
=(1/Vg )3;(Vgg";) . (2.2) where g=detg;;=1+u}+Llulul—1(u;-u;)’. Expanding
L . . up to fourth-order terms in u we obtain
The reparametrization invariance of the action (2.1) al-
lows us to select a convenient set of dynamical degrees of Vg =1+ Lui+lut— Ly, (2.5a)
freedom. In this paper we use the parametrization —
known as Gauss map and defined by Vg (D?E*Y = (u;up, {2.5b)
=(6,x2, ..., x4 H=(p) . (2.3) Vg (D) ~uk+1u} ,2 2(u; uy )?
The components of the parameter £ will also be denoted —2(u;u; Nw;u) (2.5¢)
by £€=(t,r). The vertical displacement field has d—2
components u°=u%&%& h, a .,d—1. In terms  Collecting these terms in the action (2.1) we get
J
A= fd2§ {M3+(1/2a) (0% +mbul)+ (M5 /8m} m3uf—2mi(u; ‘u; )2
+2ukul —4(u;u; P — 8w u Ny ug )1+ o0 ), (2.6)

where m3=a,M3, which is the expression relevant for
the two-loop calculations to follow.

III. COUPLING CONSTANT AND STRING TENSION
RENORMALIZATIONS

Correlation functions for the u’s, can be obtained im-
mediately from the quadratic terms in Eq. (2.6). For the
infinite-size system (which we distinguish by a subindex
D), they are
pik(E—E)
k*(k*+m3) '

(u%EU™E)), —S“baof 3.1)

27 )2
For the derivatives 0,u =u;, 0,0;u Eu,-j taken at £=¢'
this gives the following logarithmically divergent num-
bers:

1

(uu; )= aof ;—+—— =ayL, , (3.2a)
kik,
(ugu; )= aof e )2 2(k24m3)=%8;jaoLo , (3.2v)
Cugzuy )y of T aml +m =—miayL, , (3.2¢)
Cugjinge ) 1= Of e +m L ——18,mdaoLy, (3.2d)
where
2
L= (‘;ﬂ’;szi;;{=(l/4w)ln(A2/mﬁ) (3.3)
0

with A an ultraviolet cutoff. We have dropped quad-
ratically divergent unit integrals [d?k/(27)* which
vanish in analytic regularization by continuing

f

[1d%* /(2m)*)(k*+m3)", to v—0. The one-loop contri-
butions to the renormalization of 1/a, are obtained by
contracting two u,’s appearing in the interacting part of
A, Eq. (2.6). This is equivalent to calculating the Feyn-
man diagram

Uy U,
Using (3.2) we can easily evaluate the relevant terms in
(2.6) (see Appendix A). They amount to the replacements

wlul;—(d —2)agLou , (3.42)
(v;-u; Y—agLou? , (3.4b)
(u; ;) (U )—H(d —2)aoLou}; - (3.40)
The second term in A goes over into

(1/2ay)[1—(d /2)agLoJui. From this we can read off
the well-known first-order one-loop renormalized inverse
stiffness

1/a=(1/ay)[1—(d /2)ayL,] . (3.5
The free energy is obtained by evaluating
(4)=[d% |M3+[(d—2)/2]
X (‘21 k SIn[kX (k2 +m{)]| +( 4 )5
(3.6)

where { 4,,) is the free field average of the interacting
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part of the action
(M 0 / 8m 0 )

dezé’[mou}‘—Zm%(u,--u 2+2ulud —4(u;u;)?

mt

"“8(“,-'11]- )(uij'ukk)+ tee ] . (3.7)

The corresponding Feynman diagrams are

As shown in Appendix A, individual terms in  4;,, ) are
given by

(ufy=(d -2 wu; )2 +2(d —2) uu;)*, (3.8a)
((u;-u;?)=(d —2)0d — D{uu;)*+(d— 2) Cuu; Y%,
(3.8b)
(uhd; ) =(d — 2)2(u,,u”)(ukuk)+2(d—2)(uiukk)2,
(3.8¢)
((u;u;)?)=(d —2)(d — 1) uup )
+(d —=2)Cuu; Y ujug ) (3.8d)
A((ui-uj)(u,-j-ukk)%-(d 2y ) Cuyjugg )
2d =2 uyuy Y ujugg ) . (3.8)
Making use of Egs. (3.2) and of the integral
f1= [1d% /@m [k X (k2 +m})]
=(m§/4m)(1+4wL,) (3.9)

with the quadratic infinity discarded, as in an analytic
regularization procedure, we obtain

V(R)=M'R , (3.10)
where M is the two-loop renormalized string tension

M?=M3} 1+i——(1+4qu )

2 4r
+(d"—2":‘1;1l(a0L0)2] . (3.11)

This can be rewritten as
M2*=M3|1+2a,(1—1,)+4a 3 3+ 5= 24a(,1 , (3.12)
where

ap= 167 ’ (3. a)

Ty=—4nL, . (3.13b)

In this form, our result can be compared most easily with
Eqgs. (3.14)-(3.16) of Ref. 10 which uses the renormalized
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coupling constant e? and defines
De?
==, 3.14
167 G.142)
eM}
I=In > | » (3.14b)
J7;

where D =d —2 is the number of transverse degrees of
freedom and p? is an arbitrary renormalization scale.
Contact with our result is made by identifying their mass
scale u’e with our A%, From the renormalization equa-
tion for a we find that, at one loop our coupling constant
a is related to their e by ag=eX(u?=eM3) or

e (1424 -+ ) oy, 1 (3.15)

(here e ™! denotes the inverse Euler number, not the
charge), while [, transforms into their / as follows:

To=1+In(1+20)~1+2A+ - ; (3.16)
this brings Eq. (3.12) to the form
M*=ME|1+20M1—1)—4A2(1—1)
——4N %+ 3.17
+d 24)»1 (3.17

In the limit of large d, the first three terms reduce to their
result and the last one disappears.

IV. ONE- AND TWO-LOOP FINITE-SIZE
CONTRIBUTIONS TO V(R)

We now turn to the finite-size system and calculate the
action

(4)p=[d%

M3+ g | d)r @D

with the subscript F indicating the finite size. In a strip
of spatial width R, the energy (3.9) is to be replaced by

=(1/R) zf —ln[ (*+k2 N0 +k2+md)] ,
4.2)

where
k, ——”—RE n=1,2,... 4.3)

are the discrete momenta associated with the wave func-
tions of u(€), which vanish at the ends of the string held
down by static quarks. Equation (4.2) is regularized by
adding and subtracting the regularized infinite-size ex-
pression

fr=fi+ =11
—m%(1+4L) +(1/R) f d
=~ an s (17 n
x [ ‘;—wln[<a>2+k3)<w2+k3+mg)] (4.4)
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and doing the o integration in analytic regularization, ac-
cording to the formula f (dw/2m)n(e?*+a®)=Va’
The result is finite since the divergences in the sum and

the integral cancel each other. After a few simple manip-

ulations (see Appendix B) the result can be written as

fp=m—(2)(1+41rL0) +—21n——):—‘”-‘!—+m—‘z’s1
47 6R2  4m 4o t1 | g
(4.5a)
with Ay being the dimensionless parameter
Aog =m3RY/m* . (4.5b)
Thus, up to one-loop level the potential becomes
V(R)=M3R[1+ay —4/3 g +2L,+8S,)], (4.6)

(d— 22M2
(Aint>_

f d’%(m

—[1/(d —2)12m3Cuyu; Y +4Cuu ) Cuguy ) +16Cuu;) Cujug D))

where
Aor :
L, _411-L0 + ln = (4.7a)
Y
and S is the convergent sum
S] E( 1/)"0R ) 2 [(n2+)\,0R )1/2_71 _}"OR /2n ]
n=1

(4.7b)

and @, as defined by Eq. (3.13a). We now calculate the
two-loop contribution coming from { 4;,,) 5. Using Egs.
(3.7) and (3.8) we see that { 4;,, ) is given by

Muu )2 =2m 3wy Y2 — 4w Y2+ 2Cuguy; ) Cugug ) —8Cuu; Y uyug )

4.8)

Since the u fields vanish at the ends of the string, the correlation functions for the finite-size system depend on the posi-

12 Agg

tion r on the string and are(k2=w2+k2)
- et ngr . nmr'
(u(Eu(g)) zf_wzﬂ T SR SR (4.9)
It follows that
A 2 o w* 2nTr ks 2nmr
(uu ) p=—> do |~5—5—— [1—cos + 1+cos , (4.10a)
“MiFT 2R E,f-w Nk my) | Kk2+md) || O R
_ Q% & k2 2n7r
<u,-,~ujj)——-27—R"§1f_wdwk2+m% 1—cos = (4.10b)
After some calculations, described in Appendix B, we find the following products of correlation functions required in
<Aint>F:
2
(ugu, )= —4—°— [L,+2S,—4C,(n+2C,(N}, @4.11a)
2
(uu; )= :‘i (L[20,—2+8S8,—8C, (N P+ L{2Ly+2—8(S, —S;)—8[C, ()= C,(nT}) (4.11b)
a |2
Cuguy ) pluuy Y p=—m} 74—"— {[Lo+2S,—4C,(r)+2C,(r][Ly+2S,—2C,(n]} , @.11¢)
2
—_ 2 | %o —17 1 1
(uijukk>p(u,-uj>F——mo —_ - 0[L0+2S2 ch(r)]+4 Sl+T(L0R_l) ""'——Cl(r)—C:;(r)
4 12 Agr
X[S1+%(LOR—l)_cl(r)]
+4 SI—SZ_%(LOR'FI)_'_I———C( )Cz(r)_C3(r)|

X[Sl _Sz

Cuju V5= [CynT,

—%(LOR+l)+cl(r)—C2(r)]] >

(4.11d)

4.11e)
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Cuguy) plujug ) p= Z;‘ ([CHNP—2C(NCy(P} , (4.11)
|
R 21
where (1/R)f0 dr[C,(nNP=1S; , (4.15b)
hd 1 1 R =1
5. = _1 412) (1/R) [“dr[C,(nCy(r)]=—1S, , (4.15¢)
2= 2 a2 @12 f(,R s
| (l/R)fo dr[C,(NCy(N]=—1(1/Agg)+1S,,  (4.15d)
__1 2 1/2_ nwr
CiN= 7 g Z L hop) T mnleos™0, - (4132) (1/Rm3) [ Fdr{Cy(TP=—1/hog =255 , (4.15¢)
R
= (1/Rm}) | “dr[CY(r)C5(r)]=—1(1/Aog ) +28,+S5 ,
Cyin=3 — 1 1/ZCOSanr ’ (4.13b) ho fo r[Ci(nC;y(r)] 2 OR 4TOs
n=1(n"+Aog) R (4.15)
Cy(N==-1-' n cos 227" (4.13c)  where
}LOR n=1 R o 1
S =y ——, (4.16a)
and } n=112+og
Log=In—= 4.14) LS n
0R = ) ’ S,= -1}, (4.16b)
4e _ 4 or 2 (n2+7»ox)1/2 l
Primes in Eqgs. (4.11e) and (4.11f) denote derivative with
respect to the r variable. S . < 24 12,12 4.1
To obtain the final expression for { 4;,) and thus for YR E,[(" Aog) " —n ] (4.160)
V(R), we need the integrals (see Appendix C) ) ) )
R Calculating all terms in Eq. (4.8) we find the static quark
(1/R) [ "dr[Cy(NP=1Ss , (4.152)  potential
|
P I
V(R)=M3R +aM3R | ————+2L,+8S,
3 Aor

+aM3R |—‘T°(1+2S,—Sz)k—(l);+6—48S1+2452+96Sf—-96SISZ+4OS§—1253—16S4+16S250+4E(2)

+[1/(d —2)](165% +40S; +64S,+32S5+16S,L,+4L2%) | . 4.17)

A comparison with the result of Ref. 10 is most direct after the finite renormalization (3.15), which implies

TS (Aor )=AS(AD)+AS,(AY)+0 %,7& (4.18a)

b

&Ly =AL +2A2L +0 5,)& (4.18b)

In the large-d limit, the corresponding expression of Ref. 10 [Eq. (4.20)] is reproduced. Tn contrast, our result is valid
for any d.

V. RENORMALIZATION

We now proceed to the renormalization of the entire quark potential Eq. (4.17). For this we invert the formula for
the renormalized string tension Eq. (3.12) and the one for the coupling constant Eq. (3.5). The resulting expressions are

2 g2 _ R .- 1 I ~3
Mi=M*|1—-2a(l—-1)—4a“l(1-1)+ 4 —2 +o0(@’) |, (5.1)
o ., 4al 2
ay=a l+2al+d_2 +o@) |, (5.2)
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where, as before, the symbols M 2 @, denote renormalized quantities. The renormalized potential is

41 L, —1)+8S,

—af2 )
V(R)=M"R +aM-°R 3 7

+a@’M’R

1
— (1425, -5;)7 ~+6—485, 165,

+9653 —965,5, +408% —128;—16S,+16S,Ly

—4LR+4L,%+d—1_2—(16S§+40S3+64S4+32SS+16S2LR+4L§) , (5.3)
where Ly =InAg /4e =%,
Defining

2 _ 2 a2 ~=d"—2

M d—2M’ a 5 a (5.4)
and introducing the quantity ¥(R),

- 2 1 _

=———=V ’ ’ .
vV -2 71 (M,R) (5.5)

we see that ¥ is a dimensionless function of MR. It is displayed graphically in Fig. 1 for various values of &.
The limits of large and small A, have the following expansions.

Large Ay
We have
I7(R)=R+I7vac—-l—”2%_% = i}?
+32_3 _1% 3‘/1(_7 d—51oi;17+3d‘;22 (&1;/2 '1}17, Sdi;)34 (aq;/z %+O(R“°)], 56
where
P e P |

As in Refs. 9 and 10 note that in the large —m limit, Liischer’s term receives no correction due to two-loop contri-
butions. We also note that the R 3 term in Eq. (5.16) is independent of the coupling constant a. It has, therefore,
some chance that its coefficient may be universal as well.

Comparing the first five terms with Refs. 9 and 10, we see that if one replaces in the large-d calculation d by the num-
ber d —2 of transverse degrees of freedom, then the finite-d terms have an effect on the total size of the potential and on
the terms of order larger than 1/R>.

Small A’R

The renormalized potential for small Az has the expansion

PR)=—T |14 %+ 1—%|1—LR—% - (33)+%—§[§%g —Lg+ %]Lg } R
+85‘—1:3 —g3)+ 2 {50 £ s 9= |Lx ;T:) M- ] R}
+1§; §(5)+%‘-§§%+§§% 1-2 |27 |La
+§2;3) e —7’5’;0 M D | RS o™ . (5.8)
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FIG. 1. The quark potential ¥, as defined by Eq. (5.5), is
shown as a function of R, for several values of the inverse
stiffness @=0, 1,2 (solid lines) measured in natural units M. The
curves are compared with the d — « potential calculation in
Ref. 10 (short-dashed lines). The difference vanishes for &@=0.
We also show some other quantities of interest: The linear term
(very-short-dashed line) and linear plus Liischer’s term (long-
dashed line), the quark potential of the Nambu-Goto model
(dash-dotted line).

Hence, at small R, only the leading 1/R term in Eq. (5.8)
has the same form as in the large-d calculation.

For completeness and future reference we include here
the renormalized expressions for the correlation func-
tions {u,(r)u,(r)) and (u,(r)u(r)). In normal units

30 T T ! T T T T T T

20 =

~—(10,0.1)
L—(11)

L (10, 1)
—(1,0.9)
L—(0.1,1)
(16,1
—(0.1,0.1)
(10,0.0)
()

(1L0.1)

011
0109

00 02 04 06 08 10

FIG. 2. The finite-size correction to the correlation functions
(ui(ru,; (r)) as functions of 7 /R. The solid lines correspond to

(u r)) for the values of (R,@) indicated in the figure, the
dashed lmes correspond to (u,Tr\:(/ ).
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these are given by (no summation implied)

p=— =2y +- & _2

Cug(ru(r FETY L Ry

_———
u;(rugr)) , (5.9)

where
—_——
(u,(r)u,(r))=2L, —2+8S,—8C,(r), (5.10a)
(u,(r)u,(r))=2Lg +2—8(S,—S,)
—8[C(r)—Cyr)] . (5.10b)

In Fig. 2 we show these correlation functions for several
values of the ordered pair (RM,&).

For large R, the sums S,,S, and functions C,(r)C,(r)
have the expansion

(5.11a)

+22K0 20V AR,

(5.11b)

K, 27l(m+8)VAg)
|7+ ¢

+(¢-—>—¢)]

_1(27¢V Ag)

2 ncos2nmd ,

n=1

(5.11¢)

Cy= S [Ko(2n(m+$)V/ 7g) +(d— —)]
=1

1 1

RV —— + K27V Ag (5.11d)

where ¢=r/R and K ,(z) are modified Bessel functions
which decay exponentlally for large values of the argu-
ment. The last sum in Eq. (5.11c) is proportional to C;(r)
of Eq. (4.13c) which for r=0, R takes the value
—1/12Ag. Thus from Egs. (5.10) and (5.11) we can
deduce the large-R expansion of the ﬁmte-sxze correction
to the correlation functions.

The short-distance behavior is given by

N

(u,(ru,(r)=2n :r—z"e-gm—l‘stinzlr'R’;
—1?-_‘2—[;(3)—0(3 277 /R)]R2
+s & ltes)1—cis.2m/RRY,
(5.12a)



=

N LI LI L UL L LI L L B

2 _

T N T 0 W I S U O N I

60 02 04 06 08 10

FIG. 3. The Dirichlet-type series C(s,x)=37.,n “cosnx
for several values of the parameter s. For s=1 it is equal to
—In(2sinx /2).

2
(u,(Pu,(r))=2In T 6127_1 R
me sin? -
-3 —‘?; [£(3)+C(3,27r /R)]R2
43 4
—2- [£(5)+C(5,27r /R)]IR
e, (5.12b)
where
C(s,x)= 3 n ‘cosnx . (5.13)

n=1

For s=1 the sum is the well-known Fourier series of
—In(2 sinx /2), appearing in the first terms of (5.12). For

d—2
<(ui'uj)2>=< 2 uiau]q
a,B=1

=(d—2)d
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s > 1 these functions are distorted smoothly into cosx {(s)
at r=0,R and —(1—2'7%){(s) at r=R /2 and are shown
in Fig. 3. For even s (not needed here) the sums can easi-
ly be done and yield the Bernoulli polynomials
L(—=)¥27(27)*/s!1B,(x /2m). The sums for odd s must

be done numerically.

V1. CONCLUSION

We have presented a systematic perturbative analysis
of a string with curvature stiffness up to two loops in any
number of dimensions d. The advantage of our approach
is that it can be extended, in principle, to higher-loop cal-
culations. We have calculated the renormalized coupling
constant at one-loop and the string tension and the static
quark potential at the two-loop level. The potential can
be displayed best by plotting it in the reduced dimension-
al form 2V /(d —2)M as a function of the reduced dis-
tance MR, where M2=2M?/(d —2) and M? is the string
tension.

Then there is a finite d — o« limit which agrees with
previous calculations. The finite-d corrections emerging
in our work affect the large-distance behavior of the po-
tential primarily in the constant background term, which
should be observable in quark-antiquark bound states.
At short distances, it enters all powers in 1/R except for
the leading Coulomb-type 1/R term itself. At large dis-
tances, the first three terms, R, 1/R, and 1/R 3, are all in-
dependent of the bending stiffness @~ !. This opens up
the interesting possibility, that not only Liischer’s 1/R
term, but also the 1/R 3 term is universal.
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APPENDIX A: WICK CONTRACTIONS
FOR COUPLING CONSTANT AND STRING TENSION

We work out Eq. (3.4c) as an example:

d—2
a, a

3y ui(u;ug)

a=1

(ui'uj )(uij'ukk )=

—(d =2)u;u; ) (uyuy)

=1(d —2)agLou? . (A1)
The other results in (3.4) follow just as easily. To obtain
Eqgs. (3.8) we observe that there are three contractions of
two pairs of u’s. We work out Eq. (3.8b):

>—(d — 2P gy )2+ (d = 2) gy Y2+ (d—2) g )?

(A2a)
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Using Egs. (3.2) we get

((u;u;2)=Hd —2)(d+1)apLy) (A2b)

In this very simple way we can obtain the free energy of
the infinite system and thus the static potential as given
by Egs. (3.10) and (3.11).

APPENDIX B: CALCULATING ONE-LOOP-V (R)
AND FINITE-SIZE CORRELATION FUNCTIONS

Here we work out in some detail two examples illus-
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where we have used the fact that f o 9n n vanishes in an-
alytic regularization and 37— n =¢{(—1) follows directly
by doing the analytic continuation via Riemann’s zeta
function.

The second term in (B4) is evaluated by carrying the
integral up to some large but finite value n =N:

Aor
f dn[ n2+A, 1/2—n]——1nzv

Aor . Mor 1
trating the way that the various quantities in Sec. IV are —Tln?+0 NI (B6)
regulated.
First we regulate fr as given by Eq. (4.4). We write .
Eq. (4.4) in the form We notice that
=f+Afk, B1 N
fe=itar (B1) S LoiN+y+0 |~ (B7)
where n=1"
m2 . . .
fi= Mo (1+47L,) (B2a) cpmblmng these two results into the second term of (B4)
417 gives
l €K
R_-_~ ©
MR 2, f an f— 2 f dn [(n2+AOR)‘/2—n]
® d_w 24 12y 12 2
x [7 S oml@ k@i ki +mE)] . (B2b) o5 mrsag x|, m3, o
=72 0 St In———ry
The integral overa)gives R 2n 4r 4o W
© (B8)
f “2"" [In(@?+k2)+In(w?+k2+m3)]
B Thus Eq. (B1) becomes
=(kDV2+(kI+m§)?,  (B3) ,
m3 m?
where k2=n%r*/R% The divergences in Af® cancel _mg T mg  Aog
each other. To see this we write AfR as fr 41 (1+4wL,) 6R S + ln 4o~ !
AfR= 2 J7dn | (120 + (024 20) 2= 1), M — S5 +2Lo+8s (B9)
R2 ok 87 3 Aor 0 !
(B4) o . .
The first term gives and the one-loop contribution to the static potential Eq.
(4.6) follows. For the two-loop result we now calculate
27 * _2r | s 1 Eq. (4.10a):
- - dn |n=— —_ q
R2 n§1 fo R ngl nv ]v_—]
27 o )=——T (BS) Cuu Ye=Cuu; )+ Cugu Y p— Cugu )7, (B10)
R 3 6R? "’ where
J
(uu; Y j=apLy , (Blla)
2 2nr k: 2nr
Cugu; Y p= —2—— |1—cos + 1+cos (B11b)
72 RE,I kX(k?*+m}) R kX k*+m?) R
doing the o integration Eq. (B9) takes the form
a |’ © 1 2
. 1 | % 3 e I
(uu)s= yym 4Ly —4C(r)+2C,(r)+2 n§1 fo dn (niagn) ] ) (B12)

where the C;(r) are defined in Egs. (4.13). We evaluate now the (3 — f ) term. Using Eq. (B7),
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d ® 1 N N 1
— | dn |———==lim — | Tdn |————
[EI fo (n2+Ax)? Now ,,};", fo (n24Agg )12
N 1 1 1, Aor 1
= lim ———— = |+y+-In—+0 |—
Nooo | L0 (n24Rop )12 L S N
_ 1 Aor
=S, +5h (B13)

where S, is the convergent sum defined by

1 1
S2=2 —_——
n=

—— 7 (B14)
=1 (n2+K0R )1/2 n

substituting Eq. (B13) into (B12) gives the result stated in Eq. (4.10a). The other results are obtained in a similar way.

APPENDIX C: REGULARIZING SINGULAR INTEGRALS VIA RIEMANN’S ZETA FUNCTION

The Fourier series C;(r) and its derivatives are somewhat pathological due to convergence problems. In Ref. 10 the
regularized form of the solutions to the saddle-point equations with S50 were used, and the analytic continuation to
B=0 was taken after the integral over r. Here, something similar is done, although the results are obtained with some-
what less effort. We evaluate Eqs. (4.15d) and (4.15e), as examples:

°° 2nmr 2mmr
— | dr[C,(r)Cy4( d— m cos
f r[Cy(r)Cy( f )&()an_l(nz_‘_)L )172 R R
11 = n
2 Tor o2, (12 Ao 2
1 2 n | -
= —1 [+ 1
2Aor n§1 (n?+Aop )12 2 or ,21
=154+ 1400 . )
OR

3 x_,1is calculated by doing the analytic continuation via Riemann’s zeta function:

si=|3L | =¢x0. (C2)
n=1 n=1N v=0 .
In a similar way,
, (r)]2= m sin 2nar in 2mar
(n2+}" )1/2 (m2+}"0R)1/2 R R
2 & Aor
=— 1— =2§( ————25’ ) (C3)
Aor n§1 n”+Aog 0 )‘OR 3
f
where {(0)=—1. (= (n24Ag)V?, (D1a)
n=1

S - fo (D1b)

n=1

APPENDIX D: LARGE- AND SMALL-A;
EXPANSIONS OF THE SUMS §;

AND FUNCTION C;(r) we proceed in two stages. First, we calculate S; as in Ap-
pendix B with the results

(n2+?» )1/2 ’

Here we give in some detail the large- and small-A,
limits of the sums S; and the functions C;(r) used in the
text. v

To study the large-distance behavior we consider the -
divergent sums introduced in Appendix B: §,=8,+5Lg .

~ Agr
:}\,RS1+T( ~1)_L2 Py (DZa)

(D2b)
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Second, we continue S; analytically to some S;(v) defined
by

G. GERMAN AND H. KLEINERT

1B

Comparing with Egs. (D2) it follows that

1 1
- =11 _—
S.v)= 21 f dn |[(n2 42,127 S1=173lr Vi
ne
—3HVAg)™ 1 1 1 1 §K1(2ﬂﬁvkk)
z f dn 12 )\.R m VA’R a=1 /1
e (D8a)
Xexpl(—7/2)(n?+4g)].  (D3) S,=—1L, ;“/ +2'S K27/ 7). (D8H)
Resumming the S;(v) via Poisson sum formula e
. - In the same way it can be shown that
flan)= ® flan)exp(2min#)dn (D4) o —_
"=z_w n=2—-mf_°° 2[(n2+AR)1/2]—2v=_%(‘/7\’R)-—2v
=1
and introducing the modified Bessel functions with the ! (v—1)
help of their integral representation +l_v__7_ 7V hg )2
2 T
K (xz)——f ———-T vexp[(—x /2)(7+2%/7)] (D5) W)
v+1/2
we get I'(v
S(v)= f dn |[(n24A)V27% - K_m/2 2rav/ Ag)
n—l anl Fovtin
=__l_ —2v
2(‘/"'*) (D9)
2 \/ A Thus, we recover, for v=1, the sum S; of Eq. (4.16a):
I‘( ) ‘ or ST
© K_ |20V Ag)
= Koyl 277'7[\/_) 3_% = _%;3 21"/T4 - —1/2‘/ :
Xy, Y (D6) Vg AR 4 i
n:
1 i —
Thus L -—5——‘/7—%——%% — 3 exp(—2a7V Ag)
. 1 ‘/— I(Zﬂﬁ\/kR) D7 R K R B=l
Si=- E E———_— , (D7a) (D8c)
11 _ The sums S,,Ss require some more work. We introduce
§2=—? +2 2 Ko (2maV/ Ag) (D7b) a Feynman parametrization for the product
V Ag A=1 (nz)_“(nz-i-)»R)_B and then use Eq. (D9); thus,
|
S (02" %(n4ag)~F= ;—“_Na)r(ﬁ)f dx(1=x)* % B  VaD(v— 1)V Agx )21 H4(1/ Agx) ¥ 12
n=1
© K_, (2uAY Agx )
X3~ (D10)
n=1 B
It is now easy to work out the corresponding expressions for S, and S5. The results are
g L g 3 Kiatrn )
—2any/ hgx
1 d © R
= }___é-( )_1_____Lfl X 328 — , (D8d)
Vg A 27 Ag Yo Vix(1—x) =, i
_ 1 3 3/4 * K3/2(21Tﬁ'\/}\.RX)
=00)————~ (A +—(A
S5 =400 47 " fo \/x3(1—x)3 17'( Rx-) (Agx) ngl 5
—27Ay/ Apx
1 1 2. Qe R 1
=£(0)———— (g x P2+ =V Agx 1+ ——||. (D8
S A% fo \/x 1—xp |° w‘/ K El '’ 27V Agx
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The large-Ag limit of the functions C;(r) can be obtained by following the steps leading to Eq. (D9) above. The

analogous result is

3 [(n+ 402 Peostnmp=— 41/ Zg) ¥+ Fr l
n=1

+

r

It follows that, in terms of Bessel functions, the C;(r) are
given by

1 1 1 1 —
cCr)=———F——— ——K . (2m¢V Ag)
v 29 2T $Vhg oV e
_1 1
2 ‘/;\R
» | K,Qm(A+¢)V Ag) ]
X3 [ - +(¢p——¢)
=1 At+é
L1 §(2,¢)—L—(¢—>—¢) , (D12a)
4#2 }\,R ¢2
o= —~— + Ky(2m$1/77)
2 AR

+ 3 (Ko 2T+ 80V g)+Hd—>—¢)] , (D12b)

=1

C3(r)=—LL

4 A
where ¢=r /R and

1

§(2,¢)"?

+(p——¢) l , (D12¢)

éz,q)= §, (i4+qg) % (Rez>1)

n=0

(D13)

is the generalized Riemann § function (also called the
Hurwitz function).

v _ @ | K_ 1 ,2m(A+¢)V Ag)
T / v+1/2 v+1/2 R
) V) ,51 [

—v+1/2
Kv—1/2(277¢\/_7\;)

Vi
¢

(ﬁ'+¢)—"+1/2 _>¢) ’ (D11)

-

The short-distance behavior is obtained after a
straightforward application of the binomial expansion.
The results are

81 ==Ly + LML — 5E(TAR+ -+,  (Dl4a)
S, =—1LBMg +2E(NEF—LLTIAR+ -+,  (D14b)
S3=6(2)—E(4)Ag +E(6)A% — L8R+ - -+, (D14c)
Sy=—1L2)+ 34 — SEOAL + B LA — -+,
(D14d)
Ss=18(2)— 16(dAg + 5L(60A% — L LB+ -+ .
(D14e)

The functions C;(r) have, for small R, the equation

Ci(r=1C(1,nx)—1C(3,nx)Ag + L C(5,nx)A}

—3:C(Tnx Mg+ -+, (D15a)
C2(r)=C(1,nx)——;—C(3,nx)}LR+%C(5,nx)A.§

—3C(T,nx g+, (D15b)
C3(r)=C(—1,nx)-1— R (D15c¢)

Ag

where C(s,x)=T3 - n “°cosnx and x =27r /R.
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