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We calculate the contribution to the membrane curvature stiffness of the charge fluctuations in the membrane and its environ-
ment. It is found to be logarithmically divergent in the membrane thickness, positive for the mean curvature and negative for the
Gaussian curvature, with a proportionality factor involving the dispersive properties of the materials.

1. In membrane physics, van der Waals forces
which have their origin in the charge fluctuations of
the dielectric materials of the system [1] govern a
variety of important phenomena. At intermediate
distances r of 10-100 A they appear as a 1/r? at-
tractive potential [2 ] which is responsible for the ex-
istence of the many layered phases in systems of soap
and water or soap, oil, and water (in the latter case
ruining the effectiveness of tertiary oil recovery). At
shorter distances, they are defeated by repulsive hy-
dration forces. At very long distances, the finite travel
time of the electromagnetic waves (retardation) cuts
down on high frequency fluctuations. Between two
far separated stacks of membranes this manifests it-
self in a crossover from —1/r?to —1/r3 between 100
A and 1000 A [2]. For pairs of individual mem-
branes, the falloff is more rapid. Salt in the aqueous
environment makes the falloff exponential over the
Debye length.

The most important counteragent of the van der
Waals forces are the undulation forces [3]. They at-
tempt to increase the distance between membranes
50 as to create space for configurational entropy and
amount to a repulsive 1/r? potential if r is smaller
than the order of the de Gennes persistence length
E~300 A #' (which is the length scale over which a
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#! The crossover from this regime to the exponential falloff at
larger distance, when the surface looks wrinkled, is calculated
inref. [14].

membrane appears as a smooth surface, due to its
curvature stiffness). The transitions between layered
phases are mostly due to an interplay between these
two forces [5], and its thorough understanding is
crucial for an eventual predictability of many im-
portant processes.

The most obvious origin of curvature stiffness is
the molecular structure. It is easy to visualize how
rod-like molecules orthogonal to the surface create
resistence to bending, and we have constructed sim-
ple field theoretic models which demonstrate this
quantitatively [6]. These models also simulate nicely
the reduction of surface tension in oil-water inter-
faces by soap molecules. Another part of the stiffness
stems from the electric forces due to surface dipoles
or charges. This also has been demonstrated in the
above models [6].

In this note we want to draw attention to the fact
that besides fighting effectively undulation forces, the
van der Waals forces also renormalize the molecular
stiffness properties of a membrane, depending on the
dielectric properties of the materials involved. We
shall demonstrate that they stiffen the membrane
while reducing simultaneously the energy associated
with the Gaussian curvature. The integral over the
Gaussian curvature depends only on the topology of
the surface and is proportional to 1 — 4 where 4 is the
number of handles of surface. The decrease of the
associated stiffness by van der Waals forces implies
a favorization of bubbles over multiply connected
surfaces.
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The curvature stiffness generated by van der Waals
forces has an important property which must be em-
phasized at this place. Due to the long-range nature
of the dispersive forces it cannot be represented in
the local Helfrich form [7]

E= éfdzé\/é (ai+c)?+ % j d¢\/gccr,

where ¢, (&), ¢, (&) are the principal curvatures. In-
stead, the energy will be a bilocal integral

[eese [@e Joa@ee)r @),

with a long-range kernel e;(& &').

In the present note we shall not give a complete
study of the non-local properties of this energy but
consider only the global effects of the van der Waals
forces upon the curvature stiffness. We shall calcu-
late the energy difference between a spherical or a
cylindrical membrane and their planar limits. Ne-
glecting retardation effects, the fluctuation energy
density of the electric potential in a dielectric me-
dium is given by

oo

kBT
f=2o 3 whl-e)V, (1)

n=—uoo

where e(w) is the frequency dependent dielectric
constant, w,=2n/kgT, n=0, +1, =2 are the Mat-
subara frequencies (7T=temperature), and “tr” de-
notes the functional trace. For an ensemble of
damped oscillators of charge ¢e',

2
e(w).—_1+41t% Y (0f —w?—iy)~".

For w— oo, this behaves like €(w) ~ 1 —w3/w? where
w, is the plasma frequency with w2 =4ne’N /m.
2. For a layered structure with the geometry
€, forze(—oo, —d/2),
e, forze(—d/2,d/2),
€, forze(d/2, ),

the trln is the logarithm of the secular determinant
of the solutions of the Poisson equation —eV2y=0
in this geometry. Let us denote the two independent
solutions by I=e*¢* ¢ K=e~*%*¢ where € and k
are transverse coordinates and momenta, respec-
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tively. The general solution is al/+ bK. The boundary
conditions require that d and €d.¢ be continuous
everywhere, giving the secular equations

z=—d/2: ad,+b=0,
z=d/2: a+bd, =0, (2a)
with (a prime denoting d/9z)

_ (=)l
T elI'K—elK'’

_ (e; —€)KK'

4, T 6IK —el'K’

4, (2b)
the first being evaluated at z= —d/2, the second at
z=d/2. Hence 4;,(w, kd) = (¢,—€) / (&;+€)e ¥ and we
find for trIn[ —e(w)V?] the integrals

oo 2k
43 #m[l-mdz(wn,kd)]
A =
=25 § [aomi-as@.01, @)

]

where A is the total area of the interface. When in-
serted into (1) this gives the well-known 1/d? for-
mula f=H/12nd? determining the Hamaker con-
stant H in terms of the spectral properties of €(w).

3. Consider now a spherical modification of this
configuration with a dielectric shell between R, =
R*d/2. Then I, K in (2) are to be replaced by r/,
r='-! and

A5 (e, —€)IR¥ !
YT oel+e(l+1)
. (e;—€)([+1)RTGH*D
4z = &(I+1)+el 4)

Let us denote the trln by S: for the sphere it reads
explicitly

S= Y Y (2I+1)In(1-4543). (5)
n=-—co =0

For cylinders, formulas (2) hold with K being the

modified Bessel functions I,,(x;), K,.(x3)

(x=kR:). Using the Wronskian 1,,K},—K,I,,=

—1/x we write 45, , as

¢ _ (e, —e)x(1)’
™ e et (6, —€)x(1,K,n)'
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e —(a—ex(Ki)
"2 e te— (6 —€)x(1,K,)"

(6)

to be evaluated at x .., respectively. The relevant sum
for the cylinder is then

S¢= Z J‘—ln(l—A‘j,,lA 2) . 7)

nm=—oo

In the limit -0, R, =R_, x, =x_, and S%, S° are
pure numbers.

The energy densities are f= (kg7 /2){S*/4nR?, S¢/
2nR?} and amount to pure curvature energies. For
d+# 0 there will be higher corrections in powers of d/
R which will be ignored.

4. We shall employ the same definition of «, & for
surfaces of constant curvatures c,, ¢, in the non-local
case as in Helfrich’s local expressions. Then, sub-
tracting from (5), (7) the sum (3) of the planar
R=co (configuration) we find the formulas for the
van der Waals generated stiffness constants,

2 1 kgl

kg 1
2785 StaTr &S (8)

R[=—

where AS®, AS® are the subtracted sums. After ex-
panding the logarithm In(1 —x) in a power series we
find for the spherical case

AS*x~ F S 2(21+1) ( p),,

n=—oco p=1I=
a a ’
o B
><(1+a l+/i> ©)

where in the limit of zero thickness d we have

(e+¢€;)¢€¢
(ete)(e?—¢€€)’

_(e,—€)(e2—¢) _
T (ate)(e+e)” YT

€ 62

€ +e’ p= € +e’

ap=0ay (1‘—’2), a=

For small differences between the dielectric con-
stants €, €,, also p is small and we can truncate the
p-sum after p=1, thus finding

AS'Y Y {(an—as)(0)

N=—0c0

+[(1-2a)a.{(1, @)~ (a=B) 1}, (10a)
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where {(z, ) =27, (/[+g) "7 and {(z)={(z, 1) is
Riemann’s zeta function ({(0)=—1/2). We can also
write {(1, &) in terms of digamma functions

W(a=1)==y= 3 [(I+a)~ = (I+1)7']

as {(1, «)=L—w(a—1) where L=y (l.x+2)isa
logarithmically divergent sum >3 (/+1)"!—y. Ata
finite but small membrane thickness d << R, it would
be the following finite expression

S (I41)~'(R_/R,)¥*' —y~ —In(1—=R_/R, )~
0

~In(R/2de’) .

Thus, the membrane thickness acts as a short-dis-
tance cutoff in the sum over dispersive waves.
For €, =¢, we have a,=ay,

€€

(1—2a)aa=—(l—2l3)a,g=— m

so that AS® is simply

. 2 e
AS~H=Z_;OO( “ro? [E(1, ) +L(1, ﬂ)])

(10b)

with the logarithmic divergence —[€,¢/(€; +
€)?12L+... .In general, the factor in front of L is

elex(e+e) (e—€)+ (102)]
T (-6 &) (ete) (ete)?

Consider now the cylindrical case, where (a prime
denoting d/dx)

* p
ASe— _ j 9_"1(L>
n=—oco p=1 m— ° P P
X[cm(x)—1]7, (11)
with

Cm=—2>(I7)" (K3)'

(1+ — x(IK))ﬁ

(1— . x(IK)) ,
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which are all >0 for the usual situation |¢, —¢| <
€ te |e;—€l<eyte.

Let us evaluate this expression to lowest order in
the differences between ¢, ¢,, €, which amounts to
taking p=1 only and neglecting the denominators in
¢... For m>=2 we use the expansions, especially good
for large m,

Im(mz)=(2m1t/t)"‘/2e””7<1+ 5 ”"@),
k=1 M

Kn(mz) = 2mj=+2 (14§ (S0

Uk(t))
k=1 mk )’
K, (mz)=2mt/m) /2 "mz -1
(1+ Z (‘l)kvk(t))’ (12)

where t=(1+z%)""% = /2+z>+In[z/(1+
</ 1+z%], and we obtain an expansion

Cm=[2(ta +v2) —ui =021/ m?*+ [ (Qus —2u, 13 + u3

8

I,(mz)=(2mmnt)~"'/2em1z~! (1+

+2uruy —uput+ 3uiv?) + (u—v) ]/ m*
+0(1/m®).

The coefficients u, (), v.(t) are the well-known De-
beye polynomials, so that c,, starts out as c,,=
—(t*=1)?/4m?+... . If we set z=1g 9, t=cos ¢, the
integral [ dx/m can be rewritten as

lnj}% 1

mJon cos’p’

and with

R/Zd 2 1 "
J o= (2?2;:)!)!“

0

we find, after some algebra 2,

#2 The floating point coefficients in (13) are, in terms of prime
factors, 3° X 1580096099/24m"'"' — 3° x 31 x 89 x 191 X
163243/2%m!3 + 33 x 587 x 202021 X 17410307/2%m'?
- 3> X 19 x 9011 X 41920060200673/2"m'" + 3* x
2624749173370723537543/2™m"°.
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[ entr=in
0
1 3 33 33%x47  34%3631
=5 _25m+212m3" 219,53 + 2277
33%4661317 0.0097 0.0371 0.1934
2354,9 mi - mi3 mls
1.3131 11.2552
— P +) (13)

This expression holds only for sufficiently large m,
say, m= M. We therefore introduce the slightly mod-
ified {-function

1 1

n=mh 2k (M—-1)*

and we can write the sum over i,, for all m#0, +1,
*2,as

X -
% in=-

|ml=M

R

;an+2u&w+ (14)
The terms with low m<M, m=0, *1, +2, ...,
* (M—1) cannot be calculated using (12), (13) in
(11) but have to be evaluated numerically. It will be
sufficient to choose M =3, so that we only need the

extra numerical integrals

i0=—0.2677, i|]|=—0.0401, i|2|=—0.0213.

(15a)
Together with (13) this gives
AS =~ [ip+2i, +2i, — %C( N+ 4096C(3) +...]

X S plwn). (15b)

In order to judge the convergence of the sum (14)
we notice that when evaluating the sum of (s start-
ing with 725:Z(3)~0.000508 up to {(19), we find
0.000495, not much different from the leading {(3)
term. Thus, although we are dealing with an asymp-
totic series, the convergence up to m ~'? is very good.
As a further check of the convergence we increase M
to 4 and perform one more i,, numerically, and find
2i3=—0.0286, while (1) contributes —5l~
—0.0313 less than before, with the remaining series
giving 0.00026 instead of 0.000495. Combining these
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numbers we see that the final result differs only in
the fourth digit implying an excellent convergence.

The term {(1) contains the same logarithmic di-
vergence, L, as {(1, «) in the spherical case. Insert-
ing S¢, §® into (8) shows that for e~ ¢,, €,, the mean
and the Gaussian curvature constants receive the fol-
lowing logarithmically divergent contributions from
the van der Waals forces

1 keT 3 g
a® 2wk, L rlen,
1 kB 5

The first equation implies that van der Waals forces
stiffen membranes. Thus they counteract the ther-
mal softening due to the nonlinearities in the cur-
vature energy [8] l/a=1/ao—(ksT /2m)X3L.
Also the decrease of 1/& acts in the opposite direc-
tion of the non-linearities in the curvature energy [9].
It tries to impede surfaces with a large number of
handles, just as the elastic forces within the mem-
branes ]10].
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