Effect of Nonlinear Curvature Stiffness upon Fluctuation Pressure between Membranes
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ABSTRACT

We calculate the repulsive pressure between planar membranes on top of each
other at the one loop level in the presence of the full non-linear curvature
stiffness. For short distances, smaller than the de Gennes persistence length, the
pressure shows Helfrich’s 1/d® law with logarithmic corrections. In the opposite
limit, it crosses over to the exponential falloff exp [-21t(d/d°)2] where d; is a

length scale characterizing the interpenetrability of the membranes.
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" that the most important force to

Some time ago it was observed by Helfrich
keep membranes apart against the attraction of van der Waals forces Is the
entropic pressure caused by thermal undulations. The van der Waals forces
decrease at distances smaller than the membrane thickness like 1/d>. For much
shorter distances there are also hydration and electrostatic effects. For larger

distances, the power of falloff increases and reaches 1/d5 at around 10002. In the

vacuum, retardation effects change this to 1/d°.
By considering a membrane with the bending energy
_ 1 r2 2 .2
E =5 [dE %W )

(where u(g), 5=(E1. Ez) are the vertical displacements of the membrane). Helfrich,

found an undulation pressure
p=c T a/d® (2a)

with an unknown proportionality constant c, on whose size he could give various

order of magnitude estimates. In recent Monte—Carlo simulations, it was measured

to be2)

c~ 0.1 (2b)

It is obvious that the simple law (2) will receive corrections due to the non-linear

nature of the curvature energy (ullaju)

E = 21_a jd2§ 1/1+ui2 [a‘(ui/}/ 1+ui: )] (2¢)



The renormalization of the non-linear inheractions necessitates the introduction of a
mass scale A, the inverse molecular size, and this combines with the stiffness, o ! .

to form a non-perturbative length scale

called the de Gennes persitence length, which sets the scale over which the
membrane follows effectively the energy (1). Beyond this scale, the energy is
effectively %) + g2 (ew)?. When going from E<<{ to E>>[ the correlation
functions of the tangent vectors Ju change from an algebraic to an exponential

falloff.

We therefore expect the 1/d® law to be valid only for d<<{ and go over to an

exponential falloff for d>>{. The purpose of this note is to show precisely how this

happens.

Let us first give a convenient simple derivation of the 1/d® law which can easily be
extended by the non-linear curvature effects. We consider two membranes u, and

u, which follow the energy (1).
£y = o JoE [P uy? + (%u)] (4)

The condition that they impede each others undulation is imposed by a Lagrange

multiplyer v, adding to (4) the term

E'Y = j}; leE |:(u1-u2—d)2 - e1d2] (5)




It acts to maintain, on the average, a local distance d between the membranes
with a Gaussian distribution of width 1//;1 around the average position. The

parameter €, measures the interpenetrability of the membranes.

By adding E°+E’Y

completion, the free energy density.

and integrating out the u fluctuations we find, after a quadratic

T (12 2 - 242 1 )
£= 1 fien?] {nE™ 0 - Lo-[0-1 6w (_1|)<10- Led} ®
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where G(k)i(B with A=k +%, B—--E.
Hence the last two terms combine to - (Y/4a) € d® with e = 1+ §,- The integral
over k can be done after subtracting the system without distance constraint

(i.e., y=0) and we find

f=Tyvs8 -Led @

Since y is a Lagrange multiplyer, (7) has to be maximized in v which gives

Vo . e 8)
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and a pressure
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2
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just as in (2a).



Consider now the effect of the non-linear energy (2c). We go to the conformal

parametrization of the surface x (E) in which the metric is diagonal, g'j=ai X3 x = p8

) j

and enforce this condition via

I 1 2, 4 _
E, = 5q o8 [o € ax)*+ 2% (5 &,x x - 03] (1)
In a one-loop approximation, we shall assume p to lie at an extremum, which by
symmetry Is constant over the membrane. Also, k'j=18ij . Assuming a flat
background configuration x" (E) E ? and introducing the intrinsic momenta g=k/+p

we integrate out the vertical undulations and find the free energy density

f =0 {Tj—“—z b () - +——)}

12 [h(R2/A)- 1]-—+—)‘p—}

(12)
Here is the place to introduce a dimensionally transmuted coupling constant

M2 m A! exp{—.?_—:‘t (13)
In terms of X, the free energy takes the simple form

f=0 { ’Té%u' h (A/2) + ;’j} (14)

Extremization in p and A gives A=A and f = A/a.

The inverse square root of A can be Identified with the De Gennes persistence length
(3). Physically, this is seen when calculating the fluctuations of the surface elements
x(E) from (11). At the extremum, they have a correlation function (k4+ik2)—1, so that

the length scale is indeed (%) 2.



We now go over to two membranes, following (11)-(14) and imposing a repulsion
condition of the type (5). This gives the free energy

f=o {T L @) -2 (KREANT- T2 o) + 2 - L ) (15)

(2n) 4n ap 4a
where G—1(k)=(sz) with A=k6+lk2+'r/2 , B==v/2. Maximizing f In v gives now

2 2

x _T(dq 1 _ 1., —

=2 ) G aE = aRéry stetfar ) (16a)
where

X2 s fve d/a A, =AY (16b)

The right-hand side is a function of the dimensioniess ratio J\/AY as shown in Fig. 1a.
For A=0, we recover the previous result (8) in the form x2=1/4, for small 17,
2 2

x“r(174)(1 X_/'n:+...). For large XY, X 8 (1/1:17) !n(l_r).

Minimizing f with respect to p gives A/X as a function of Amsy

-1 1 — — L2
h (A/X) h XY + —2)‘7-/4 )"Y atg (Y4 7\7 /XY) X A'Y

It is plotted in Fig. 1b. For small )"Y' h(l/i)“('rt/4).7)(1-)\7/1c + ..,

for large A, b (x/_x)m(vxyz) [h L)+1/2+..].

Maximizing f in A, finally, implies that f=A/a. The result depends on two mass scales
Mali/a and 1/d02 = (e /a). The first is proportional to C_z, i.e the transverse smoothless

scale of the membranes and the overall size of f. The second Is related to the inter—-



penetrability of the two membranes and regulates how the energy depends on the

2=m2d21/ix_{.

distance d. In terms of m2 we have X

The energy f=M? A/X is plotted in units M=1 as a function of d'm. Its derivative
—-(d/2d)f gives directly the pressure. For comparison, we display also the pure 17d?
law of Helfrich’s and see how the curve goes over from n1/d? at short-distance to
an exponentlal falloff at distance. For small d, A/A%4/rd’(1-4hnd®). For large

d, M/ Awexp [-2m(d/d,)’].

Notice that while the parameter A can be calculated from the short distance cutoff
A—1, i.e. the molecular scale, and the membrane stiffness 1/a, via Eq. (13), the parameter
d, Is at present theoretically unaccessible. This is due to our incompetence of calculating
path integrals with hard-wall constraints. Up to now, only computer simulations have

)2)

been able to determine the related overall size c in the pressure law (a
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Fig. 1a,b)

The solutions of the extremalizing conditions of/9v=0, of/dp=0, showing x2=75d2/a
and A/X.
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The reduced free energy f/M?-1=A/A-1 as a function of the distance dsd, where

M~ and d, are the two length scales of the system M~ for the persistence of

the stiffness and d,, for the non-interpenetrability of the membranes).



