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On the basis of the parameter /2 of angular stiffness, I explain why a Lennard-Jones lattice in two dimensions melts in a first
order transition, with decreasing transition entropy at increasing density, while a Wigner lattice undergoes a single sharp, nearly
continuous transition with a specific heat curve of the “A”-type and the shear elastic constant collapsing near the universal

Kosterlitz-Thouless value.

Recently [1], the old controversy of 2D melting
has apparently been resolved. It has been shown that
the parameter /%, which characterizes the angular
stiffness of a crystal, is decisive in determining
whether dislocations and disclinations in a crystal
undergo a single first order or two successive con-
tinuous melting transitions. The separation point lies
around [2] /2 ~0.1-0.2. Thus, we now possess a new
criterion of 2D melting: For /2</? there is a single
first order transition, for /2~ /2 the transition is sharp
but continuous, and for /?>>/2 there are two well
separated very smooth Kosterlitz-Thouless transi-
tions. In the continuum, the parameter /* is defined
by the higher elastic energy

E= [ dx (e + Ykt § Quet )10 ug)?
+2ul(8,0)2+..] (1)

where ;=3 (du;+0,1,) is the usual strain tensor and
@=73(0,u,—0d,u,) the local rotation field. By rota-
tion symmetry, there are only two independent sec-
ond gradient terms 9,0,u,0;0; and 97u,d?w, which,
by a partial integration, can be brought to the new
terms in (1). The new parameters /2, I'2 are ob-
servable in the dispersion curves of the sound waves

when expanded in powers of the momentum &,
w3 (k)=uk*(1+1%k*+...)
wi(k)=Qu+2)k2(1+1'%k>+...) . (2)

In the discussion to follow, thé parameter /' 2 is ir-
relevant and will be dropped. The Monte Carlo eval-
uation of the separation point was done on a square
lattice with an energy like (1) but written down in
terms of lattice gradients. There, the spectrum for
small & is

w3 (k) =4psin?(3k) (1+12k2) +... .
It has the continuum limit
wi(k)=~pk*[1+(P=-%5)k*+..].

Hence, in the continuum form of the energy, the sep-
aration point is expected to lie in the range

12~0.05+0.05. (3)

Let us test the new criterion. First we consider a Len-
nard-Jones system with a potential (m>n)

V=4e[(a/r)"=(c/r)"], (4)

which has its minimum at ro= (m/n)"/"~"q. The
triangular lattice vectors are
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The dispersion matrix C,;(k), whose eigenvalues are
w?(k), is given by (r=|x(l)|, a prime denotes
d/dr)

VI VII V!
Ci(k)=— l;O [7 o+ (72‘ - F)xixj]

X [cos(k-x)—1]. (6)
Expanding the cosine in powers of k we find the qua-

dratic and quartic terms

V/ VI/ VI
C,(jz’k2+C,-(j‘”k4= Z I:—;— 5,-j+<7 - F)x,-xj]

1#0
X [§(k-x)’— 55 (k-x)*] . (7)

In the quadratic term, the sixfold symmetry of the
x (/) vectors is sufficient to guarantee isotropy, so that
(with k=k/|k|)

C(kex)?y =3k%r?,
(xixi(kx)?y = bk (0, + 2Kk; ;)

and
CP~ Y [(EVr+i V'r*)é,
i#0
+H(V'rr=V'rkk) . (8)

In C{», the sixfold symmetry guarantees isotropy
only up to the tensor x,x;x;x, with the angular av-
erage being

Clkx)*y =3k
The average of the tensor sy, = { XXX XXX, > /76
differs from the isotropic form

Cmn = 25 (0,0xOmn + 14 pair contractions) ,  (9)

but the anisotropy is very small: when ordered ac-
cording to increasing number of indices the matrix
elements are (after an average over the vector
x=(cos g, sing) and its six rotated versions)

3:[10+cos(69)], 55 sin(6p), 35[2—cos(69)],
— 33 5in(69), 35[2+cos(6¢)], 3 sin(6gp),
35[10—cos(6¢)] .

The average ( (k-x)S) varies at most by + 3 as
compared with the isotropic 12, so the deviation from
isotropy is at most 10% We shall therefore be content
with the isotropic approximation with
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Cxi(kex)®y =1 (5, +4kk,)

so that

C¥~— 3 ( > g ] V"r4)5..

v A \16x24 16x24 i
+9L6(V"r4—V'r3)E,/€,]. (10)

After a transverse projection by Pf=6,—k/k;, i.e.
Cr=CyPf, the ratio C{"/C$* is the desired pa-
rameter /2. Taking only the nearest neighbours into
account we find the simple approximation (in units
o=1 )

,__agm(m—4)—af~"n(n—4) (11a)
T 2dm(m=2)—al " n(n=-2)’

i.e., for the common values m=12, n=6,

2 o l_lliag
=— — . 11

== 0T Lag (11b)

For high density (i.e. high coverage of the sub-
strate ), the lattice spacing a, is smaller than the size
ro where the potential is minimal and eq. (11) shows
that then /? is very small in absolute size and neg-
ative in sign. If for decreasing density a, approaches

s = [m(m—=2) /n(n=2)]1/¢m=n)

(i.e. 5'7€21.30760), then /> becomes more and more
negative (see fig. 1). Thus, according to the present
theory [1], the transition entropy must increase with
lower density. This is indeed what happens in ad-
sorbed monolayers of rare gases *'. The same feature
is observed in Monte Carlo simulations of these sys-
tems [4], which for a,~ r, always show a single first
order melting transition.

It is curious to see that /> diverges at gy~
Tmax ¥ 1.30760. Looking at experimental phase dia-
grams, we see that the liquid—-gas transition lies near
that value.

If the approximate solution is extended to include
the full lattice sum, the result is changed only very
little, except Very near r,,,.

Consider now a 2D Wigner lattice of electrons
which can be prepared on a surface of liquid helium
[5]. The lattice dynamics has been studied by Bon-

#1 See, for instance, the phase diagram of Xe on graphite [3].
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Wigner lattice

(m, )=(12, B

Lennord-Jones

minimum r‘U —

Fig. 1. The parameter /2 as a function of the nearest neighbour
distance for the Lenard-Jones system with n, m=12, 6, and for
the Wigner lattice (- - -). The vertical line indicates the position
of the potential minimum with the equilibrium position being
~ 1% smaller than that.

sall and Maradudin [6]. From their paper, eq. (5.2),
we extract the transverse part of the matrix C;; di-

vided by w2 where w}=2ne?/may., v.= %\/g a?
=cell area,

cT=if(z (16— (G-k)*/K?]

X [@_12((G+k)*/4e)—p_,,2(G?*/4€) 1}

+ ¥ {[1—cos(k-x)][4€*(r*— (x-k)*/k?)]
1#0
X(oa/z(erz)—Ze(ouz(eﬂ)}), (12)

where e=7n/v. and /ex, G/ 2\ﬂ run through the di-
rect and reciprocal lattice via the rescaled vectors (/,,
g, =Iintegers)

i =Jn/2//3(L+ih,3/31),
G(g)=n/J/3/2(&, -3V38+1/38),

(13)

respectively, both with the same lengths

n/2//3 (G +LL+13)2,
n/2//3 (83 —g18:+82) .

The function ¢, (z) is defined by
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p,(z)= J detme—*.
1

Being interested only in the lowest two powers k* and
k* we shall ignore, as before, the small anisotropy of
the k* term so that Cr can be expanded to give di-
rectly the desired w3 (k) (in units of w3).

The two sums in (12) converge exponentially fast
and it is sufficiently accurate for our purpose to in-
clude only the nearest neighbours. For them s~ 3.376.
For the next-nearest neighbours s is already as large
as 10.1276 and ¢, (s) is very small. Using the above
i;l_gular averages, we calculate (with s=#2=G=2n/

3)

CP = ﬁ 6X2X [—5501/2(5) +45°03/2(5) ]
2na,

~0.0362, (14a)

with x(/) and G(g) contributing the same amount.
Our approximate number is in excellent agreement
with the value 0.0362967 obtained from the full sum
(see eq. (5.24b), in ref. [6]). For the quartic coef-
ficient we find

C{¥® = \/”70 6

{[245 201/2(5) = 225°93/2(5) ]

+ [%S(/’a/z(S) —45%05,2(5) +355°072(8) 1}

~ —0.000225 . (14b)

Thus, in contrast to the Lennard-Jones system, the
Wigner lattice has an g, independent almost vanish-
ing ratio C{¥V/C{?,

I?~ —-0.00622 . (15)

This value puts the Wigner lattice very close to the
regime (3) where the single first order melting tran-
sition begins to split into two Kosterlitz—Thouless
transitions. The specific heat is expected to have a
sharp peak just as in our model simulation, fig. 2 of
ref. [2], i.e. it should look like a A transition. The
latter feature was first observed in Monte Carlo sim-
ulations of the Wigner lattice [7]. The fact that the
transition lies near the merging regime of the two
transition lines explains also why the elastic constant
collapses at the melting transition near the universal
value of the Kosterlitz-Thouless theory [8].
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Fig. 1 of ref. [2] shows the line in the /?, T plane
at which the elastic constants at the universal ratio
o u(u+A)/ kegT(u+3iA)=1, with A=co for the
Wigner lattice and the transition at (15) lies very
close to the end of this line.

In conclusion, it appears that the angular stiffness
parameter [, which can easily be extracted from the
transverse branch of the dispersion curve, can in-
deed serve as a guide for predicting the discontinuity
of the melting transition. Certainly, the new crite-
rion can only be very crude, no better than the good
old Lindeman criterion for the melting transition in
three dimensions for two reasons: First, the model
Monte Carlo determination of /> was done on an un-
physical square lattice and a simulation on a trian-
gular lattice will be necessary to make the value more
precise. Second, at no place in the defect model is the
effect of atomic hard cores taken into account. All
such questions remain to be investigated, just as it
will be interesting to study systems with large posi-
tive /? and two continuous transitions. Two partic-
ularly interesting systems, which have recently been
investigated experimentally and whose differences
should be explained by the present theory, are layers
of methane and ethylene adsorbed on graphite [9].
A measurement of /2 would be feasible and a theo-
retical value can be extracted from the dispersion
calculations in ref. [10]. This should yield an im-
portant test of the theory.

A more detailed discussion of the present theory
will be found in ref. [11].
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