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We present the exact solution for the temperature dependence of the tension of a string with ex-
trinsic curvature stiffness in the limit of infinite dimensions. The solution possesses an anisotropic
gap parameter and exhibits a deconfinement transition at a temperature T that depends only very

weakly on the stiffness.

I. INTRODUCTION

The inclusion of an extrinsic curvature term into the
string action by Polyakov' and the author? has led to an
interesting generalization of bosonic strings. The new
strings seem to be a much better surface representation of
the string between quarks in QCD than the former
Nambu-Goto string. The most attractive features are
asymptotic freedom, > spontaneous generation of string
tension,® a realistic quark potential ¥ (R) (Refs. 4-6) [the
experimental short-distance behavior F(R)« —0.52/R
is predicted to be —m/6R =—0.5236/R!) (Refs. 6 and
7), and glueballs.® Some time ago we showed in a Letter’
that, in the limit of infinite dimensions, a purely spontane-
ous string (which is a string that starts life without any
Nambu-Goto tension at all) has a thermal deconfinement
transition'® at a temperature roughly where it is expected
from Monte Carlo simulations of lattice QCD (Ref. 11).
The purpose of this paper is to give a detailed derivation
of this result and to extend the calculation to arbitrary
combinations of initial tension and an extrinsic curvature
term. We shall derive the exact equations for the temper-
ature dependence of the string tension and present nu-
merical solutions as well as analytic approximations.

A consequence of our equations will be that, whatever
the mixture of the two terms, the power-series expansions
in the temperature do not differ from the pure Nambu-
Goto case (there are only exponentially small differences
which decrease like e “™/T for small T). In particular,
the first nonleading linear term in T has the well-known
miversal form that corresponds to a two-dimensional
blackbody radiation in a box with periodic boundary con-
ditions. It is independent of the extrinsic curvature
gtiffiness, just as the corresponding term in the string ten-
sion'? and in the entropy of large spherical surfaces. 13

II. THE THERMAL DECONFINEMENT
TRANSITION

In a thermal environment, above a certain temperature
T? called the deconfinement temperature, the vacuum of
snon-Abelian theory loses its quark-confining property.
In SU(3), the transition is of first order as long as the
quarks are assumed to be infinitely massive. If the gauge
group were SU(2), the deconfinement transition would be
continuous. Physically, the distinction is easy to under-
sand. At larger temperatures T the world sheets swept
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out by the strings acquire a finite temporal width and
their Fourier frequencies ,, =2mmT are discrete. The
Fourier components associated with «, are strings with
no fluctuations along the time direction; i.e., they are
equivalent to polymers in three dimensions. In statistical
mechanics it is well known that an ensemble of such ob-
jects is dually equivalent to a three-dimensional spin
model. In color-SU(N) models, the strings can branch off
each other in multiples of §. Correspondingly, the spin
model should have as many components as there are
colors in SU(N). The diagrams in the high-temperature
expansion of the spin model describe the random strings
that are relevant at finite temperatures in the gauge
theory. In SU(3), where the strings have branch points at
which three lines meet, the field-theoretic formulation of
the corresponding spin model contains a cubic term in
the disorder field. This is responsible for the first order of
the transition. In SU(2), where such triple branch points
are absent, the transition remains of second order.

Quarks of finite mass allow for the thermal creation of
strings with open ends. In the analogous spin system this
corresponds to adding a finite external magnetic field. It
is well known that such a field wipes out the transition if
it is continuous, or decreases its strength, if it is of first
order, until the transition disappears. In the absence of
dynamical quarks, the thermal deconfinement transition
is the result of their strings between quarks becoming
infinitely long, due to their overwhelming configurational
entropy. This transition happens already at the level of a
single string. The fact that every string is embedded in a
grand canonical ensemble of closed strings is expected to
lead mainly to a slight change of the critical temperature
and the critical indices, with respect to those of a single
string. This is the experience in polymer physics where a
single polymer is described by an O(n) spin model with
n=0 while an ensemble has n=1.

It is the purpose of this paper to study the thermal
deconfinement transition as it arises already in a single
string, thereby ignoring the effect of the remaining en-
semble. We shall see a signal for the transition in the
vanishing of the tension at a certain temperature. Since
the string tension depends only very weakly on the
stiffness parameter, so does the thermal deconfinement
temperature, when expressed as a fraction of the string
tension.
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III. ACTION AND FREE ENERGY AT FINITE T with p,7p,. Correspondingly, we shall parametrize the

. o s extremal matrix AV as
Consider a string in the form of an infinitely long pla-

nar world sheet disturbed by small undulations. In the M/pp O
presence of tension and an extrinsic curvature stiffness, A= Y, (2b)
the action is 1P
— g2 2e0/o
A=Miye f d’§Vg Because of the periodic boundary conditions, we expect a

— y saddle point with constant pg,p;,Ao,A;. The periodicity
1 2 Vv 2..ay2 ij a a 0P 170 M )
+ 2 f d*EVg [(D x®) +AY(d;x ajx "gij)] ’ implies that the timelike momenta are discrete. The
(1)  spectrum of the operator

where x%(&',£%),a =1, . .. ,d describes the world sheet of

the string, the Lagrange multiplier AU ensures the correct _pi=— a 1 62 ()
intrinsic metric g;=9;x"d;x% and D is the covariant Po 0 Pi
derivative. The constants M xg and 1/a are the Nambu-
Goto string tension and the stiffness, respectively. In the is
limit d — o, the x¢ variables can be integrated out and
the action is given by the extremum of the resultin
effective actiongin g%, AV, At a finite temperature T.,,, i% kG /potki/py (b)
has a finite extent in the imaginary-time direction, . . i
TE(By=1/T,y), with periodic boundary conditions. with discrete frequencies ko =(ko),,
The subscript ext indicates that a quantity is defined in
the extrinsic space x°. Since space and time directions no (ko) =20T ym =27 /By )m ,
longer appear on equal footing, we expect the extremum m=0.41.+2 @
to have an anisotropic metric - Y
po O and continuous k;. The effective action following from
8= |o (2a) (1) after integrating out the x“ fluctuation can therefore
P be written as
J
‘)4 — d —2 2
1= 5 Rex s —lnu ko2 /po+ k3 /p P+ (Ao/po)ko i + (A /p DK
m=—x
+fd2§\/p0p1 (ko+kl Ao/po— A /py) | - (3)

where we have omitted, for a moment, the first term in (1), the Nambu-Goto term. We shall abbreviate (5) as

d—-2 2

Ay =R BV poprf ©
with a “free energy density”
1 ~ » dk oA 1 A M
=—T, ——In{[(ky)2, /po+ki/p P+ (Ag/po)ko)’ + (A /p ki) — +—— |+ —
f Vo 1m:2_wf_m 2 {{(ko)m /pot ki /p1] 0/Po/\ Ko /m 1/pk1} v 2@ | po P
M
We now introduce the intrinsic frequencies and momenta
0, =k, /V po=20Tm, m=0,+1,+2,..., ¢,=k;/Vp, . ®)
The quantity
1 J—
/3 7 ext‘/po (9)

X

measures the intrinsic size of the world sheet in the time direction.
Adding the Nambu-Goto term, we are then faced with the action (6) with f replaced by

o+7\1 1
2a 2a

Ao b M A
Po  Pi

for=Migtf=M¥s+T 2 f_w—z—ln[w +¢2 P+ hgw, +Ag3]1— } (10

m=—o
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where we have introduced the abbreviation M ¥,
into the terms

i,
a 2a

(Y

o= G+f In 4+)‘q )—

Po

where
A=(Ag+2y)/2

is the average gap,

- o dw
Aff=|T 3 - —
m=—cc f~oo 2 —w 2T

is the finite-size correction at an isotropic average gap A, and

AfP=T S -

m=—

is the correction due to the anisotropy of the gap. We
shall introduce the gap anisotropy as
§=(A,—Ay) /2% . (15)
The sums and integrals diverge and have to be regular-
ized. We do this within the infinite system where Af7
and Af? are absent and we have to deal only with the
first four terms in (11). They can immediately be ex-
pressed in terms of a dimensionally transmuted coupling
constant A as
0 =i g+ folT)—
tot NG TJo 4
_ x - "
=M§G——W[ln(7»/k)-—l]—z}i— : (16)
The total free energy density is then given by the finite
expression

_ - A
r=Mg +f0(7»)—z1;+AfT+Af5

+ - (Ao/pot A1 /py) - (17)
a

IV. CALCULATION OF FINITE TTERMS Af7,Af?®

The term Af T is a finite-size correction for a system
with a hypothetical isotropic gap A°=A'=X. We make
use of the integral, valid after analytic regularization,

fw £1—q—ln(q2+az)=\/;_2 . (18)
—w 2T

There is no divergent part if we follow the standard rules
of evaluating Feynman integrals via the proper-time for-
malism level: i.e.,

Ao A
_+__.

6=2M3 /(d —2). The expression for f,, can be conveniently split

+AfTHASY, (11)

(12)

- dg,
[ Shnf(02, +¢3 2+ Rd +41)] (13)

L {In[(@?, +¢2)? + Aok, + g3 1—In[ (02, +¢3 ) +XNw?, +¢%)]} (14)

f qln 2+a

f fw dTe-(T/Z)(q2+a2)
o T

= __L_ dr 12, —(1/2)a’
vV r T

We therefore rewrite Af 7 as

AfTAT)=

ry -f°

m = — o0

— 27T

X[(Cl)2 +X)1/2+(w2 )1/2]

=Ir 3y -f"

— — 21r

X [2(@}) 2 +(

% + XN — (02 )2 . (19)

The first expression

2w (20)

is again treated by analytic regularization. It is equal to

27V rodr it o Aoy, | (220
2 i, T — m
F(v)fo 7 m;_w f-oo 27
(21)
with v continued to —3. Using the duality transforma-
tion
T i 60(7/2)“‘%’: 1 i e*(ﬁlz/Z‘rTz) (22)
"= oo V2T o= — o

We can write
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d“)m —( T/Z)wfn
e

T_f;—f‘”

m=— oo —w 2T

__2
Vrr

i e—(ﬁ‘lz/Z‘rTZ) (23)

m=—co
and the expression (20) becomes

27V 2

o dT _ s Py 2
2 < LT _v—(1/2) (m*©/2rT*)
ro vasdo 2 ¢
L(3—v) %
=2X2_V—lj(_v—)—7%7 2 (TZﬁ;lZ/z)v—(lﬂ)
m=1
~ z B 4

v——1/2 i

This result could have been obtained directly by perform-
ing an analytic continuation of Riemann’s ¢ function

«

v)= " (25)
m=1 M
in terms of which
2 T,,,:s"’_w f_w o |om
o w Ao
=872 —
s m2=1 fo 27
=87T2%(~1)=—217T%.
(26)

Let us now turn to the remaining piece in (19). The sum
and the integral over (w2 +A)'/? and (w%)'* both
diverge logarithmically, but the difference is finite. The
subtraction is made explicit by carrying the sum up to
some very large but finite value m =N and adding the

identity

(27a)

When taking the integral up to the same large value

oNd@m 0 s 9 an
] e (AR SRECIES

=—21;[60N(ﬂ’%v+7‘)1/2_“’%\’+7‘ arcsinh(wN/‘/_):»)]

~2 4 2 (N 4@V T (27b)
dr 27
the InN terms cancel and we obtain
AfTR,T)=—2aT*+TVX
—-—[ln (167227 T2 /K)+1]+ S1 , (28a)

40
where we have introduced the sum
21rT ad A
= 2 +0)12—
A 2: ©m 2co,,,
-1 S [(m2+Xp)2—m —X;/2m] . (28b)
)“T m=1
It is a function of the dimensionless quantity
Ar=X/4n?T? . (28¢)

Inserting Af T into (17) and ignoring Af gives the renor-
malized free energy density for an isotropic gap A:

27

fEXn=— 3T2+T\/A+ =S,

MESWELY % (29)
47
where we have introduced the natural temperature scale
of the system
T=V /e " . (30)

The sum over m in S, converges rapidly for small ;. If
A becomes large it is better to derive another representa-
tion for Af T(A), starting out directly from

AfTR,T)=|T z f_w -

m=—o

x[<w5,+x>1/2+<x=o>] : (31)

For this we treat (w2, +A)'/? in the same way as (o?, )12

in (20). We write

) 27V 2 dr ,_
= 1 L _[87 _v-an
v#»1£n1/2 T(v) \/21Tf .

Then we use the formula

A=Ak, V), 8

fwﬂr—lex
0o T p 27 2

where K (z) is the modified Bessel function, and we have

\/w +A

Ty -f"

m = -

=—%;8K,(2m7z\/X_T)/2wﬁ\/f;. (34)

It is convenient to introduce the dimensionless expression
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§G=Zlr's —[° Qon | (o2, +7)172
1 T ’X - —w 27T m
= [ dm |m? 4% 35)
2)\'T m=—owo
To obtain the =0 term in (31) we take the limit
KmVi/m—-—L1
VX m
and the right-hand side of (34) reduces to
2T & 1 T s
D R LAE
T m=1 m? 3

Then (34) amounts to

%]

(Ap==23 K,@emV 1) /QemV i) (36)
m=1
and we have the alternative expansion, from (31),

Si(Xp). 37

This representation allows us to calculate the behavior
for small T. Since K,(z) decreases exponentially fast in z,
this limit reads

AFTAT) ~ —ZT2+0 (e~ M), (38)
r—~0 3

There exists yet another useful representation for
AfT(X,T). By representing K (z) as an integral

K\(z)= fowds e~ Vs Hlz

__m_ =%
‘\/i —w 2T

we can rewrite the §;(X;) of (36) also as

—(q%+X)1/Zz/X

» dqy = 1 —(q2+X)‘/2m/T
— Q27T /X) - — !
@aT/D [ - 2= —e
in which case the sum can be performed with the result

S5 e ood (21172
Sl(kr)=(2wT/x)f ;Lln(l_e ta}+00 2/

f ds In[1—exp(—Vs2+120k,)] .
277“\/}\7-
(40)

Hence we have also

—(g3+RV/T
e ).

ATRT=—2T2 42T [ ¥ ——In(1—

3 — 0 27T
(41)

This result could have been found directly from the origi-
nal expression
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AT, T =

T 2 -

m=—oo — 277'

o d -
X [* Blline?, +q} +1)+(R—0)] 42
2

using the well-known formula

w do,
T3 —f ; ]1n(w3,,+a2)=2T1n(1—e““/T),

m=—ow T T

(43)

which can be verified by differentiation with respect to

a?,

® w dw
T _2 _f—oo 2T

m=—ow

1
w% +a

m

3 :l_[coth(a/zT)—l]7
a

(44)

and making sure that there is no extra constant of in-
tegration by (treating the limit T— co via the Euler-
McLaurin formula.) Then

AfTX,D=2T [~ —(ln{l——exp[ (g2 +%)2/T])

+(A=0)) . (45)

The integration of the A=0 term gives —(7/3)T? and we
arrive back at (41).

The calculation of the anisotropy correction Af® Eq.
(14), is more tedious. As it will turn out at the end, for
not too extreme values of M%g, the thermal
deconfinement transition takes place at a relatively low
temperature (high B.,,) where the gap anisotropy is very
small. It is therefore useful to study the transition first
within the approximation of an isotropic gap and take a
look at the modification by 6§70 later.

V. ISOTROPIC GAP APPROXIMATION

We set =0, A=A, and consider the action

d—2
‘)4150 2 extﬁext\/p&olflso (46)
with
~ A A1 1
=M+ oM ———+AfTA D+ | —+—
f S0 NG fo A f 2 | po Py

47)

We also shall first look at the purely spontaneous string,
ie, Mig=0(v=0).

When extremlzmg this simplified action it is useful to
observe that Af T(A, T) has the functional form

AfTAT)=Ag(rp), (48)
where A is the dimensionless variable

Ar=A/4mT? . (49a)
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We must make sure that the extremization of the total
action A, with respect to py,p,,A has to be carried out
at fixed coordinates, i.e., at fixed £,£!. Hence T,,, is

fixed and A, depends on py, via
}LT - kp0/41T ext . ) (49b)

Therefore, the extremization of A, gives from the
derivative 1/p; P00/ 3V o Po» the equation

A A 1 1
(M)———+Ag(Ap)+2Ag" (A p)hp+ — { ——+—
oM =3y Thslhr) T2k | e P
=0, (50
from V/p;3/3V py,
SolA)— 7‘ +?»g(k,)+i 11 =0, (51)
28 [P0 P1
and from d/0dA, the gap equation
9 1 141 1
—folA)— gAp)+g (Ap)hr+ —
a}\fo 4,” T)TE\ATIAT 2w | po | Py
=0, (52

where the prime denotes the derivative with respect to
Ar. Adding and subtracting Eqgs. (50) and (51) gives

fO(K)———‘:;_+Kg(kT)+lg’(7»T)KT=O, (53)

L1

S 0 O U Yo7y YRV (54)
Po  P1 gt

The second equation determines the difference between
the extremal p, and p;. Using the obvious relation,
FolA)=M3/0L)fo+(A/4m), the first of the equations
can also be rewritten as

)+g(Ap)+g'(Ap)Ay [ =0. (55)

axf"

Inserting this into the gap equation (52) shows that the
minimum lies at

L1, 1

 —— :_—1._
Po P

y (56)
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When putting this back into the gap equation this reads

[fo )tAg(Ar)]= [fo M+AFTA,T]
=0 (57)
and the total action is simply {with
A ERextBext‘/p(plzRB)
A= AL+, T]
E-d—z—z—Afgo(k T) (58)

The metric has disappeared when going to intrinsic quan-
tities. In the final expression, only fL (A,T) has to be ex-

tremized in A. Depending on which of the three forms of
Siso [29), (37), or (41)] we prefer, the gap equation reads

1 T
o In(T*/T") v
+T i 1 — 1 =0, (5%a)
2@k 02 ()2
~L1n(A/X)+% S Ky(mVA/T)=0 (59b)
m=1
1 1
2 In A/AH—f_w 2 T
X {coth[(g} +M)1/2/2T]—1} . (59¢)
In deriving (59b) we have used the identity

—K|(z)—(1/2)K,(z)=K(z). The last equation (59c) is
identical with (59b) via the expansion
coth[(g}+A)1"2/2T]—1=23 % _ exp[ — (¢} +A)'"*m /T]
and the integral representation for K(z):

w 1 -~
=| dt e "
fl Vii—1

dq,
=V -—
e (¢ +x)‘/2

Xexp[—(g2+M)"2%2/VR].  (60)

It is useful to introduce the sum

S,(Ap)= 217T2 \/wl — 51,—[
é —\/m—1+;;_ % (61a)
in analogy to S; of (28b) and
S,(Ap)=m ngw - [ do, W
=% miw_f—:dm (m2+lxr)“2 o1

in analogy to (35). Just as S, in (36) and (40) we can
represent S, in two alternative ways:

S,(Ap)=2 axT O A8, (0]

=2 S K,Q2rmV/7p)

m=1
Ow \/s2+ [ coth( \/s2+12ﬂ'\/7LT )—1].
(61c)
Then the gap equations read
T
_____1 2 2 4+ 6
n(T*/T*) 2Vk+2 HAp)= (62a)
- )+-L§ Ap)= 2
41T1n(7»/?\)+ 2752( T) (62b)
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The action (58) can now be used to calculate the string
tension as a function of the temperature T,,,. Since a
state of energy E has a Boltzmann factor exp(—p,,E),
and the tension is defined by M2, =E /R,,,, it is obtained

by dropping the extrinsic area factor in the action (58):

Aﬂ = 'dziRextBext‘/pTOPIfgo { )\-) T . (63a)
Hence,
M2 (T =222 f 100 T) (63b)

It is useful to write f T T) as fo(A)+Ag(Ap), thereby
exhibiting its functional dependence on A, A

Mtzot ( Text \/PoP1[f0
Let us also express the right-hand side in terms of extrin-
sically renormalized quantities, using the dimensionally

transmuted coupling constant A defined in (16) and going
to extrinsic space by a metric factor g:

Aew=P A . (64)

In the present T-dependent calculation, the quantity p is
the common limit of py,p; for T—0. Let us introduce
the notation

//)\OEpO/p » (65)
Then we write
VP =V Pbihes VPPOA=V PPk (67

and the string tension becomes

M2 (T o) =22V Bl orext hen) + hex@ (Ap)]
d - ext '\/
=42 piam | =—f
Pl 0,ex ex
2 }"ext t t
A'CXt
+ =g (Ag)
ext
=ML (T =M (T (68)

where M 2 is defined as the expression in the large square
brackets. It is the ratio of string tension at T m =0
versus the tension at zero temperature. There fo o (Aey)
is given by (16), except with A,A replaced by A, Aey-
Now (1/Ag)fo,exi(Aexy) depends only on the ratio
Aext/Aey, 2nd the bracket is a function of A.,,/A.,, and Az
In fact, it depends on these variables in the same way as
the intrinsically renormalized quantity (1/A)fy(A)
+(A/A)g(Ay) depends on A/A and A,. For various Ap
we calculate, from (62b),

A/A=exp[25,(A;)]

=exp ol 2R \/kT . (69)

m=1

The ratio A/X can be rewritten directly as the extrinsical-
ly renormalized ratio A, /A, This is inserted into (68)
to find the numerical values for quantities in large square
brackets. It remains only to calculate the prefactor
v/ pop,. For this we use Egs. (54) and (56), according to
which

t__=—+g'()\‘T)}\‘T’ (70)
ap, 4

1 1

—=——g'(Ap)Ap . (71)
ap, 4m g \ArliT

Moreover, because of Eq. (53), we can reexpress g'(Ap)Ar
as

, 1 A
1
:——flso (A, T)+74;T~ {(72)
and obtain the simple equations
1 1 1.7
— = f (AT}, 73
ap. 27 3 Siso(M T (73)
1 1 .
— == fioAT) . (74)
ap; A
They determine the ratio
o1 /o= | 2= — LT /f A7) (75)
and, since (1/A)f I (A, T)—1/4a for T—0,
—1——2——f£o(7» ) (76)
Po
L_Amer . 77)
P A

The expressions (75)—(77) are all renormalized in extrinsic
space. This follows from the fact that (1/A)fI (A, T)
can be expressed entirely in terms of A, /A, and A,
and this may be written as

Ap=A/4wT*=A%p, /47 T2, (78)

with (77) appearlng once more on the right-hand side.
It remains to the plot M2 (T,,,) as a function of T..
For this we introduce the extrinsic temperature scale

Text = \/%—()T:\/i;t/ 4e 7V, (79)

It is directly related to the string tension at zero tempera-
ture M

T..=e"™V'1/(d—2)21M,, . (80)
Moreover, since
Ar=A/ATT?
2
- -
—(/RNT Ty | el
2

2(}\'ext/}-\’ext)( ext/Text )p04e~2'y s (81)
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we have

Ty /T VA/A%e Y (82)

—~ = ~ 1
=VBT/T=Vpo—=
Vir
with all quantities on the right-hand side being known
once the gap equation (69) is solved as a function of Ar.
For a numerical treatment it is more convenient to use
the gap equation in the form (59a) and (62a):

= 1
T/T=ex s ) ()\, )
P W, AT
_ 1 < 1 1
€Xp 2\/T m2= 2+;\. )1/2 m |

(83)

From this we calculate T/T as a function of A,;. Then
we use the relation
A _e¥

47

2
T

= (84)
T

to find A /A and thus the expression in large square brack-
ets, M2 in (68). Finally, we obtain T, /T, from (82).

The solution of the gap equation is displayed in Fig. 1.
We have taken f I as the sum (29) and brought the large
square brackets in (68) to the form

4
B (To)=V b - f oM T)

=f(fiﬁo(k,T)/[(2k/4v)—fi€0(k, V2.
(85)

2
0 ! Tox!/Toxt,v

FIG. 1. The string tension as a function of the reduced tem-
perature T.,, /T, , where

- Y
7 e

—‘—"—'__.___—"'—'—M0 zOSOZMO N
ext,v ‘/2‘”-(‘1 2) tot tot

where M, is the string at zero temperature. The curves are for
a purely spontaneous string (v=0), but there is little depen-
dence on v. The deconfinement temperature is seen to lie at
T..~0.68M,,. The dashed-dotted curves represent the simple
analytic approximation explained in the text. The upper three
curves show the corresponding gaps Ag,A;,A=(A,+Ay)/2 as a
function of temperature as well as the analytic approximation
(dashed-dotted). For moderate values of v, the figure has almost
no v dependence.

This quantity is plotted as a function of T,,, /T, in Fig.
1. By definition, it tends to unity for T, —0. The tran-
sition occurs at a temperature

/Ty ~1.35 (86)

ext ext

with

R
Tou~ %\/ 2/(d —2)7M , ~0.502M , . (87)
This implies a ratio between deconfinement temperature
and string tension of about
ext /Mtot"’o 68 . (88)

This value is not far from what is found in Monte Carlo
simulations of lattice gauge models. These give, for SU(2)
and SU(3) (Ref. 11),

41A" in SU(2),
Teu= 80A" in SU(3), (89)
or, using simulation relations between A% and M,,,
0.35+0.05M,, in SU(2),
Tou™ 0.75+0.25M,, in SU(3) . 50)

When comparing these numbers with the result of our
calculation we have to remember that this result is valid
to leading order in d only.

VI. ANALYTIC APPROXIMATION

It should be noted that the above deconfinement tem-
perature is very close to what can be obtained analytical-
ly by means of a very simple approximation to A(T)/A,
valid for small to moderate temperatures. We observe
that for T—0, the argument of the Bessel function be-
comes large and, since Ky(z)—V'7/2ze "% decrease ex-
ponentially for large z, the gap equation (59b) gives

A A—1=4V 7T/ 2V he VMT 91)

i.e., A=A with only exponentially small corrections. This
makes it easy to estimate the deconfinement temperature
T quite accurately. In the limit of small T, also K (z) is
exponentially small and, with the gap A being close to &,
we find right away the approximation

fT(A,T)z{- s

- —?TZ. 92)

Therefore, if T exceeds the value
T4=V3/4rV 7=0.276V A=V 12e "T=1.95T (93)
or

VT =V6/m(d —2) M, ~0.97TM 94)

the string tension turns negative and the confinement is
gone. The subscript of T¢ records the fact that we are
dealing with the purely spontaneously string, v=0. In
order to compare this number with experiment, we have
to go over to an extrinsically renormalized quantity. For
this we calculate



I

Text() p0/2| de (95)

The quantity py’*| 4 is found from (76):
o

1 4r | A 0w

—=2——fL A D=2—— | =T+

p\o flSO ) )\’ 477_ 3

(96)

with only exponentially small corrections. At Tg this
gives

Ai ~2 (97)

Po (1§
and hence

T, o/ Tou=V PoTd/T=V6e 7=1.38. (98)

We therefore find the approximate deconfinement tem-
perature
ext 0o=V3/mld —2)M,, ~0.691M,, , (99)

which is very close to the precise numerical result (88).

Let us also give the full temperature dependence of the
string tension. The approximation of neglecting the
Bessel function in the gap equation in 7 (A, T) using (85)
and (76) we obtain
A (T

ext )

=V [1—4x?/3)T2 /X /[1+ 402 /3)T2/R],  (100)

where T is related to the true extrinsic temperature by

o0

Text hd
b

=My +
VP mew "t T

Ina(h

1PosP1)

=M —(7T*/3NV Ao/A\— X /@ +(1/2&) Aho/py+ 4, /p,) -

Let us introduce the parameter

y=7T/3=7T%, /3. (105)
Extremization of A yg gives the equations
IYRLL %
M%«;*‘ﬁ; f ——t—(—Ao/pot A /p)=
(106a)
A |12 o
Mio—L |2 | —E+— A
NG po | M a 262( o/Po~hi/p1)=
(106b)
Ay A
S TR T e B R (106¢)
a 2ax |po P

dk, )
- In[Aoko ),
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T2, =T%p= T2——4E-——. (101)
1+ 73’ T2 /R

Inserting this into (100) we find the simple expression
BB (T ) =[1— (877 /3) T2, /A1 . (102)

It is plotted in Fig. 1. Later we shall see that this approx-
imation is so good that it can hardly be distinguished
from the full numerical calculation.

It is interesting to realize that, in this approximation,
the purely spontaneous string tension coincides precisely
with the Nambu-Goto tension as a function of tempera-
ture. This will be shown in the next section. The
difference is exponentially small, <e~**/T. For v=0, it
is, at T¢ of the order of exp(— —Vart /3)=2. 7%, as we
can see from (92)-(94).

VII. THE NAMBU-GOTO CASE

For completeness, let us go through the well-known
calculation of the thermal deconfinement transition in the
Nambu-Goto case.'* We shall write the action in a form
convenient for the d — o limit as
Anc= fd2§‘/g Mg

A
+—2—g(a,~u8ju ~g11+8~,}) )

(103)

where, & is here only a dummy parameter, &0, intro-
duced merely to make the following equations look as
similar as possible to the previous ones. The free energy

density can be written down right away as [see Egs. (6)
and (7)]

/pot Ak /p 1= R/a+(1/2a) Ao /po+ri/py)

(104)
[
R A S —X— 1 1o (106d)
po V1—8 148 2a |po pi ’
From these we find
% =Mc » (107a)
a
A A _
S R B N B G R (107b)
2a | Po  Pi Po
Al I— ———— i s .
=M}tV (1-8)/(1+8), (107c)
apo,y Po
and at the extremum

NGPo
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Due to (107c), the gap equation (106d) for § becomes
1 1
"Vis 146

~ 1
=M2
NG 182

8+ —L—v{I=8)/(1F8) | . (107d)
M

NG

This has only the isotropic solution §=0; i.e., the gap
matrix is AY=AgY. Then, Eq. (107¢) shows that Po1—1
for T— 0 so that 5, ;=p, | and we have

and hence
Po=1—y/My, , (108b)
Pr=(1—y/Mis)/(1 =2y /M%) . (109)
Therefore,
Mtzo: “_“\/ﬁcﬁlfNG =M2NG ‘/ﬁ()ﬁl( 1 _Y/MNGﬁo)

=M3c(1—2y /Mys)'?

=Mig[1—(d—2)T%, /3M2, 11"

=M}MXUT,,) . (110)
This is indeed the same as (102).

VIIL. INCLUDING THE GAP ANISOTROPY

We shall now study what happens if we include the
effects of gap anisotropy. We work with the full action,
including the additional Nambu-Goto term. It will turn
out that due to some accidental cancellations, the anisot-
ropy remains exponentially small at small 7. For this
reason, including § it will hardly change the above calcu-
lated deconfinement temperature. Also the Nambu-Goto

J

_ 1 & 1 (Zm —1)
h(8)=—— ~§2m
41 m2=1 2m(2m—1) (Q2m0n 5
Ll [, e PG 1XaXg g
1677 2 2! 3 3 4 4!

term will be seen to have little effect on this temperature
if it is expressed in terms of the total tension.

fo=Mig +fo<7t>——7~‘~+AfT(X, T)+Af¥X,T,8)
Ao A
S (111)
28 [P0 P

Let me calculate the anisotropy correction Af3(R,T,8).
We shall do this first at zero temperature where it can be
rewritten as

8 — dzq 4 2 2y 4,52
Aft= | 5 )Z[In(q +hogd +21g3)—In(g*+Xg?)]
= ZfZﬂl q2+7\—%—cos(2¢)
—In(g>+1) (112)
where AX=A,—A, arctan(q,/q,) and, as before,

A=(Ay+A,)/2. Regularizing the integrals via the dimen-
sionally transmuted coupling constant A,

s (de | 1 o
af fo 277[ 4,”[}‘ (AA/2)cos(2¢)]

XIn[A—(ALA/2)cos2¢]/A

—(Ak=0)] . (113)
This has the functional form
AfUR,T,8)=2Ah(8) . (114)

By expanding the logarithm into a power series in
8=AL/2) and doing the integrations [ >"(d¢ /2 )cos’™¢
=(2m —1)M/(2m)! we obtain

’ ‘ ‘ (115)

Alternatively, these seriés could have been found by writing the first term in (112) as

f027r __Q f Xp

so that

2-i—)v———)—k—cos (2¢) ]

___1_ »dT __+en I
. T exp zk I)(rAL/4)
i X 1+e/2

_ € € € 2

=——T|—-1—=||= -, ——,1,
27 1 2 2 F 2 4’ 8,
I e

= ——In(X/u?
27T6k 47 n(A/k7)
X2 1 e €

—— = F|—=——,— 1,67 |—1 116

47 € 2 4 4’1’8 J I (116
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1 2 1 € € 2
~—— = | F|————, —— - 117
h(S)G‘)O yp L 4,1,5 1] , 117
where F(a,b,c,z) is the hypergeometric function.
We now turn to the finite-temperature expansion
~ ® w d ~
AfAKANLT)=T 3 f_ Zq’ In (02, +¢2 )+, +q1)—A—7‘(w —¢?) | —In(w?, +¢% +1)—In(w? +q?)
m=—cw ®
(118)
[
By integrating over ¢, we obtain the sum 5 %
w A =( +2)2 1148 TTEaE b ] (122)
AfS=T b> (A + 4, — (0 +X)"2—(02)?], o, TA
e A =(@2)H1—6+ ), (123)
(119) ~
B, =1+480% /A+ -, (124)
where
Af=[w} +(A/20(11B,,)]"2 we find the expansion
=T2 4(F 172 =
[w5, HA/2)(1+8)1+B,,)] 7", (120) R s AL & 202, +X - 202, L
B, =[14+4(AL/A2)0?, 112 =0 ,,,;_m (w2, +X)'72 (022
=[1+88w?, /A(1+8)*]'2 . (121) (125)

This expression is not quite correct, though. In the limit
T —0, the sum (119) contains a term linear in AA which
we know to be absent in Af3, due to Egs. (114) and (115).
The mistake arises from the fact that formula (119) is ob-
tained by doing the g, integration first at finite 7, and
then the limit T—0. The limit and the integral over g,

In the limit T— 0, this does not vanish but goes against

A

. 126
. (126)

—on I =

do not commute. Indeed, if we expand at small This can also be seen directly from the expansion of
§=AML/21 Af?%in (118) in powers of AA:
i
2 2 2 g2y
AL & « dq, Wy g7 (AA)? © dq (@, —q71)
aft=="7T 3 T LD N
2 Z Y e 21 (0, g Nl gl ) 8 .Y 02T (0 +g) el +g]+R)?

In the limit T —0, we can set 02, —q3 =(w2, +¢?)cos(2¢)
and integrate [(dw,, /2m) [ dq, /2w as

] o 2
E}Tfo d(w}, +q}) [ Tdg

which shows that the term linear in AA must vanish. In
order to correct for the mistake in (119) we have to sub-
tract from the sum the superfluous linear term in AA and
replace (119) by

AO=T 3 [AF+4; —(oh 0V —(a},) ]

m= —oC

~4r (128)
8
It can now be verified that in the limit T—0, f ® tends
properly to Ak (8?), as it should. A more systematic dis-
cussion of the term linear in AA via dimensional regulari-

(127)

zation is given in Appendix A.

When trying to evaluate the expansion (128) numeri-
cally, we see that it is well defined only as long as AA >0,
or, if AL <O, for low w2, < —AZ/(4AA)=—AX(1+5)*/86.
If —AA\ exceeds this value, the inner square root becomes
imaginary and we have to calculate 4,7 + 4, as

Af+ A, =2]4,,cos(y, /2), (129)
where
| A, |=[0} (0k, + 1)1/
=[0% (02, +X—AL/2)]1? (130)
and

Y m =arctan[( —Ade? —A2/4)12 /(w2 +1,/2)]

=arctan[|B,,|A,/2(w?%, +1,/2)] . (131)

Hence
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w2, +A,/2)]"?

A cos(y,, /2) ]z

sin(y,, /2)

_1__ 24

(132)

and the terms in the sum (128) for w?, > —A2/4AA have
to be taken as

[}, (0}, +10)]?

AP=T 3 {\/E

172

(133)

The variables A, T enters (138) and (133) in the dimen-
sionless combinations AT=A/4WZT2, and Af 8 has the
functional form

AfSK, AN T)=2hT(X1,8) . (134)

We are now in the position to extremize the total action
A =[d =2)/2]R oy BexV pepf L. When differen-

tiating with respect to Vb Po Vo pi,A,8 at fixed T, we
have to remember that A;=2X/47°T contains p, as a fac-
tor. Then, using once more the function g (X;) defined in
(48), we obtain, as a generalization of (50)—(52) the four
equations

_ A
Mg+ fo(X) —{‘—H[g (Rp)+h (R, 8)]4 2A[g (R p)+h (K, 8) g+ —— . ° p—l =0, (135)
0 1
5 - A s~ Ao A p
MNG+f0(}‘)_E+)‘[g()" kr,ﬁ)]JrZ —P;_;: =0, (136)
D R g (Rt Ry, 8) g )+ h PRy ) g+ |20 20 (137)
dA 4w 28 | Po P1
TR0 [ L L1, (139
28 [P0 P
f
where the overdots and primes denote the derivatives S AR ANT)=2M2% G+ fo(M)+AST
with respect to 8,Ar, respectively. Adding and subtract- b
ing the first two equations gives [compare (53) and (54)] +AfYK,ALT)
_ < A a ~ . =2M+fo(M)FRg Xy )+hT(Rp,8)].
M§G+fo(k)—-4’\;+/\(g +h )+ Mg +h ™A =0, NG /oM FALg () +hAr,0)]
(143)
(139)
PYRY In order to simplify the gap equations we insert (141) into
Ll Sl ke +nm™i, (140 (137 and find
Po P

Inserting into (139) the identity given above Eq. (55) and
the gap equation (137) we find [extending (56)]

Ap A
R AL Y £ (141a)

Po P | 27

or

ALy LML LA o (4

a|Po P a [pr o 27

Using the last equation of (138) amounts to

111 1|_ 1 ST,y

— | —+— |==—+28h (A}, 8)+2M} /R . (142)

a

C2n

Po P

Equation (141) implies [just as before Eq. (56)] that the
total free energy density reduces simply to

v
My

A

+%f0(1)+g +hT+(g'+h "X,

M
)\ _‘f tot

=0. (144)

Then we combine (141a) with (140) and obtain [compare
(70) and (71)]

A
1% M2G+4i+x(g FRTO,

io - (149)
L =M +— A —Mg'+h s

aP1 4ar

Using Eq. {139) this can be rewritten as
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1 }\‘O ~ 2 7\. T ~2 X _ 1+8 + _
—0= A - - =-"211/4}+1/4
2 Po Myt tot "M T 4m =g /Ay +1/ 4y
=i+ — T 1 1 +
NG TS tot » 146) +5 Bm+—B— (1/4,,—1/4,)
1A X - X 151a)
— =Mt [ My~ (15la
a pi s
T b, = MB (A=A, +ad (174, =1/4,)].
T J tot 1
so that For w?, > A}/4A\, we have to use
=10 tcosty, /2)
/oo L1481 /0=8] 203+ 2 —f I /7T . O g TS0
(147) —sin(y,, /2)[1+4802%, /(1+8)°R]/|B,1} ,
(151b)
The normalized quantities §,,p;, are obtained from (146) 1 ) s )
by removing the T—0 limit b,=—————|A4,lsin(y,, /201 —w?, /| 4,1
2:B,, |
rox 1 14w :
Fiot —AL1+v) /4, — The gap equations read
apo, am 5
BN, L N N
so that [compare with (76) and (77)] 4T X Y an (T2 T+ A i 27TS
1_ 1 1 +T(ag—1/2V)
7y 1tv 1-5 __(f“"_ZM c) o
Po (148) +T 3 [2a, —1/(w} +1)?]—8/47=0 (152)
p, 1+v1+8 % ot and
When_combining (1‘46) with (142), finally, we obtain the 2Tb,+4T i b, _1
fallowing gap equation foc 8- NepuN 47
dAf = 1 8[1+ (47 /X)M
hI(Xp,8)= 3L 1—82{ [ G|
1 —[4m/RNfL —M35)—1]), (153)
= T (BL /Dt ) [ Sio =My )= 11]
= AT 2 where
=47 /ANf o —Mng)— 11} _ _
a,—1/2Vi=(vV1+6—-1)/2VX,
(149) (154)

We now evaluate these equations. In (144) and (149), we
need the derivatives of 4 with respect to A at fixed 6 and
with respect to AA at fixed A. These are obtained from

A,

1+ 1 1
2| = 1+— |B, + —
o |s 447F 2 B,
1+56 1 5
= + —_
VE 1+ 1+2Bm(B'” 1) H
(150)
3, | 1 4o, 1-8
3AL | 84Ff )\ " B, (1+8)
D SN
=t——— (A +o? /AL
w B, Amtem/An)

so that the gap equation for A and AA involve the expres-
sions

bo=1/4V'X(1+5) .

In Appendix B we have written out these equations ex-
plicitly in a form which is most convenient for numerical
calculations. These proceed as follows. For each
Ar=X/4m*T?, we calculate from (83) [or (B4)] a lowest
approximation for T assuming §=0. For that T we find
from (153) a new 8 which we insert into (152) to obtain an
improved value of T. After a few iterations, this pro-
cedure converges. In this way we find T and 8 as a func-
tion of A, and thus also A=A;4m>T2. These values are
inserted into (143) to get the free energy density f I and
into (148) to get §, ;. At the end we plot

thzot:ﬁtzot( ext)/Mtzot( )
=1/ pp 4 /RfL, (155)

as a function of Ty /T,y , Where
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Tex, =V pR(1+v)/4me 7

=V'1/2m(d —2)e"M,; . (156)

Let us study the limit of small T analytically. In this lim-
it, the gap becomes nearly isotropic so that it is sufficient
to keep the anisotropic terms only up to second order in
8 and T. In particular there will be terms 82, T8.

The first is known from Eq. (115), Af® =—(X/
167)8%+ - --. The T$ term is found by applying the
Euler-McLaurin formula to the first term in Eq. (125). It
gives

A)\, > «x dwm
Af® ~ == |T -
fA]z»:O 41 m=2_00 f—oo 2
20, + A 202, X
(@ +X)1/2 T (@2 )2 +O0W(AL)T)
(157
~ A -2,
8204V}

where B,(1) is the Bernoulli number B,(0)= —{(0)=3.
Hence the linear term in T'§ cancels and we have the ap-
proximation, correct to order 8%, T3,

A fﬁ =ihT= _ZL
4

(—8%/4)+ -+ . (158)

Notice that there are terms of order & to higher order in
T. Indeed, we know all terms of order & from the calcu-
lation in Appendix B. Using Eq. (A11) and ignoring only
the Bessel functions which are exponentially small for
small T we have

) S

. A
AfS=Rh]=—"-—"—=="T2
fl 1 A 3XT 3 (159)
plus O (8%). Hence we can rewrite
APS=RRT=" | S grsa |4 (160)
4r | 3hp

whose & term is correct to all order in T while the 8 term
will have corrections of order T. With this approxima-
tion, the total free energy at the extremum (143) is
simplified to

AV
ft7(;1=2 477_
T 2
+—}‘" —ln(X/XV)—v+l——.}“—+%‘—§—
4 3k, 3y 4
4o (161)

and the gap equations for A and & reduce to

:;[(XV/X—l)v—ln(X/Xv)—82/4]=O+ s, (162)
0 S O S )
a7 | 3hp 2
L1 s+(X, AW
4 1—82 v
— [(X,/A—Dv—In(X/A,)
82
(1=8)/3kp—
(163)

For 8=0, the first equation is solved by A=X,. For 8#0,
we expand A=A,(1+/) and find, to lowest order inl,

1
[~ ———8%/4.
1+v /
In the second equation we observe an important cancella-
tion: The term 1/3X; drops out on both sides. Thus, for
small [/, the gap equation becomes

(164)

1 ) 3 82
0= 3 =1 =8+ 6(1+v—Iv)+ (1 +v) +—
1—8% |2 4
—8(1—8)/3h, |+ - . (165)

Since ! vanishes at =0 like 87, this equation is solved by
5=0. Only exponentially small corrections are expected
from the omitted Bessel functions.

It is then easy to write down a very accurate approxi-
mate solution for the string tension M ¢, as a function of
temperature. Since A=X, up to exponentially small
corrections, the total free energy density becomes simply

f£t=%(l+v—l/37»7«)+ S (166)

Thus the thermal deconfinement transition lies at
A =A/47*T?=X /47’ T*=1/3(1+v) . (167

This implies

V%Tﬁz\/3/4ﬂz‘/,67&v(1+V)=V-1_2—'3AyText,v
=V 6/m(d —2)M,y
~0.97TM,, . (168

Thus, when expressed in terms of the total string tension
M, \/p‘T‘f is independent of v, in particular, it is the
same as for v=0, in (94). _

In order to translate \/;_)T‘j into physical extrinsic tem-
perature we have to calculate 5y: From (76) and (166), we
find

V(1+vi1/371T)+ e (169)
Po,1
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At the deconfinement transition 55 '=2 so that the ex-
trinsic temperature is lowered with respect to (168) by a
factor V'2; i.e., the physical deconfinement temperature
lies for any normality at

Td

ext,v

~0.691M,, (170)

just as in the case v=0. Certainly, this result holds only
if v is not too large. Otherwise A will be much smaller
than A(1+v) and the Bessel functions behave like powers
in A rather than being exponentially small.

The quantity M =M 2 (T )/M2,(0) has, for all v,
the approximate form

1—1/3%,(1+v) '

1+1/3X(14+v)
1—47T3 /3% (1+w)
14+472T2 /3K (14+)

i~

~

172

—~
=~

(171)

This implies the small-T expansion

Wrm1—2T2 T s 2 (172)

2 3

Inserting py,

Po=[1+47*T* /3% (1+v)] 7! (173)

we find from (171) once more the pure Nambu-Goto ten-
sion, up to exponentially small corrections,

M*=~[1—(d —2)aT%, /3M%,]""? (174)

just as in (102b), but now valid for v-#0. In particular,
the T correction to the total string tension AMZ_ is the

same for all v, having the universal form

AMtzot:—T?Tgxt - (175)
In Fig. 1 we have plotted the string tension as a function
of temperature including the effect of the Bessel functions
and gap anisotropy and see that the result is indistin-
guishable from our simple approximation (172) and (174).
Indeed, the gaps Aq,A;,A remain almost constant and
identical, up to the deconfinement transition.

The solution of the equations for various values of v
will be presented elsewhere!® where we shall calculate, in
particular, the deconfinement temperature as a function
of v. In the limits v— —1 and v— o the deconfinement
temperature coincides with the Nambu-Goto results.

IX. CONCLUSION

The temperature behavior of the tension of a string
with extrinsic curvature stiffness is exactly calculable.

When expanded in powers of T, the result is independent
of the stiffness, i.e., of the normality v. For the region of
moderate v we have been able to find an analytic approxi-
mation to the solution which is extremely accurate up to
the deconfinement temperature. It coincides exactly with
the corresponding result of a pure Nambu-Goto string.
The v dependence resides all in exponentially small terms

AT

of the order e . These terms become important
only if the spontaneously generated part of the tension,
X,, is much smaller than the normal part A,v. Then the
exponentially small terms turn into powers and require
special consideration. In the limit of large v our solution
approaches the perturbative expansion in powers of
@ < 1/(1+v) which will be discussed in detail in Ref. 15.

An important aspect of the exact solution is the singu-
larity at the transition, just as in the Nambu-Goto string.
A similar singularity is expected to occur also in the not
exactly soluble problem of the quark potential, at some
R,. Thus, the string with extrinsic curvature stiffness has
at present similar problems in explaining real physical
phenomena as the Nambu-Goto string. These singularity
aspects will be studied in more detail in Ref. 16.

The only way to circumvent such unpleasant singulari-
ties seems to lie in the existence of a nontrivial infrared
stable fixed point in the B function. Apparently, this can
exist only if there is some kind of self-avoidance con-
straint in the ensemble of surfaces. This will probably
have to be imposed via some negative weights of in-
tertwined surfaces.! Recent simulations of surfaces!’ !
without such constraints have, until now, not helped to
clarify the issue. In simulations, the difficulty is to avoid
breaking reparametrization invariance as in Ref. 19.
Otherwise the surface possesses in-plane elasticity, which
they are not intended to have and which can produce ad-
ditional unphysical phase transitions.

Note added in proof. After this manuscript was sub-
mitted, several papers have appeared dealing with the
same subject but not solving the problem completely as in
this work: S.-M. Tse, Phys. Rev. D 37, 2337 (1988); Z.
Xiaoan and K. S. Viswanathan, Mod. Phys. Lett. A 4, 99
(1989); Z. Xiaoan, Simon Fraser University report, 1989
(unpublished); G. German and H. Kleinert, Ref. 15. See
also the most recent work in Ref. 16 which evaluates the
consequences of the equations derived here.
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APPENDIX A: EVALUATION OF THE LINEAR
TERM o« AAInAf3

Let us evaluate the linear term in the anisotropic enet-
gy (127),

Al i « dq,
Afﬁz—_..—_T P
: 2 m:z_w f—w 27 (2, +q3 Nw? +q3+X)

2 __ .2
Dy — 4]

(A1)
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systematically instead of the nemistic derivation in the
text. The sum over all m can be converted into an infinite
sum over integrals:

0

S expQmipm)= 3 dlu—m)

m=—c m=—co

(A3)

= 2 f exp(la) m/T) . (A2)  ensures the equality on both sides, modulo divergencies
m=—w  A=-o which vanish in dimensional regularization. The full sum
The Poisson summation formula over m in (A1) becomes, therefore,
AL do, . dq m 41
Afe=—== ——expliw,,m /T) -— (A4)
l 2 = 0w (0, +¢1 N’ +q7 +1)
We now go to polar coordinates in the w,,,q, plane and set
m =g cos¢, ¢,=gq sind (AS)
so that
AL 2 w d
Aff———z— ) f qqf_ ——Qexp(tqm cos¢/T)M
_ AL 2 & e 1 _
=55 22 fo dq g————J,(gm /T) (A6)

where J,(z) is a Bessel function. We now make use of the
identity

Jolga)=—Jy(ga)+(2/qa)](qa)

=—J0(qa)—(2/qaz)-§—qu(qa) (A7)
and the integra] becomes
—fm (ga)
-(2/a2)f°°dq 21 9 riga), (a8
0 +2 9¢

where a = /T. The first integral is well known; using
the formula

J, (za)

w bY Eq*
v+l —
fo T

— % g (ab)
24T (1+p)

(A9)

it becomes —KO(‘/ia). The second integral can be
brought, by a partial integration, to the form

2 1 4 S q
= ———3 —Jq(ga)
21 a7 RIUERT It
2 4
=;2§ ;5% \/7& (A10)

with the identity K4(z)
AL

2

+2K,(z)/z =K,(z) we obtain

AfS= QT*/%) 3 (1/m?)

with the first term in large parentheses being equal to
7°T? /3% and the second term going to zero exponentially
for small 7. Thus,

K,(2rmV/ )
Zwm\/X_T

(A12)

If we now remember the alternative representation for
AfT, once via the Bessel series (36), and once via the o,
series (28), and the corresponding alternative representa-
tion of the gap equation (59b) and (59a), we see that Af?%
can be written as

afe=2% T\/7L+2T2 (0%, A1) =0, — =2
m=1 2(t)m
—AT I [1/(0} +2)~1/0,,]
m=1
—AL/87 . (A13)

The terms in the large square brackets, on the other
hand, can be combined to give the expression (125), so
that the w,, sum (128) is indeed a corrected representa-
tion of (118).

APPENDIX B: EXPLICIT FORM OF EQUATIONS
FOR THERMAL DECONFINEMENT

The total free energy density (143) is
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fL =2Mg+foX)+A[g(Rp)+hT(X},8)]
oM A /R ) —v+ 1= 173K, —8 S K,QrmVyX
47 47 oy
+ VT e — D/ R+ 4V X g) 2 [4:+4 ;,'—(m2+IT)“2—m]—al, (B1)
where
At =A45/720T=[m?+ (A (1+8)/2)(1£B,)1"%, B, =[1+85m? /A (1+8)*]'/*. (B2)
For small X ( $3 say) the first two rows in (B1) are taken as
A X w - -
24—v+ﬁ —I(T2/T)=2/3%,+2/V A H 4780 S [(m2+AT)“2—m—xT/2m]]. (B3)
T m=1
The gap equation for A, (144) reads
4117 H(K /Aw—In(A/A,)—v+4 2 Ko2emV ) |+ (VIF6—1)/V A +2 2 [2a, —1(m2+X;)"/?]—8
m=1 m=1
(B4)
where
a,=2rTa, =[(1+8)/4) [1/4 +1/4 +1 B, +7;— (1/4 . —1/47) (B5)
For small XT, the first row is calculated via
ﬁ R, /Av—In(T/TH+1/V A +2 S [1/(m* %) 2= 1/m] (B6)
m =1
The gap equation for §, (149), is
1 e P 11 . - A
L Vv —1 =L _ T _ v,
= |1/( 1+8\/kT)+8m2=1bm L= 1og 8[1+(X,/Aw]— |(4m/N)f L, 2V 1 1 (B7)
where
b,=2nTb, =[1/4X;(1+8)B, {4t — A +m*1/4}—1/4)]. (B8)
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