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We present a simple model describing a fluctuating ensemble of fluid membranes with curvature stiffness and displaying the
formation of a lamellar phase from a microemulsion. At the transition point, the surface tension disappears and a condensate of

zero momentum gives rise to a stack of planar membranes.

Recent work on soap membranes in microemul-
sions has shown that the curvature stiffness of the oil
water interfaces can persist only over a certain length
scale { [1]. Beyond this scale, the interfaces appear
wrinkled and are governed by a fluctuation gener-
ated tension. On the other hand, it is known that
membranes which are stacked periodically on top of
each other possess no tension at all, i.e. {=co. This
is beautifully demonstrated by the power-like line
shapes of X-ray structure factors of such systems [2].

The purpose of this note is to present a simple
model which is capable of describing the transition
between the two phases. We consider a set of sur-
faces x4(¢ (a=1, 2, 3) numbered by n and para-
metrized by & (i=1, 2) and approximate their cur-
vature energy linearly by

> [ az a2z (1)
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To this we add the constraint of in-plane
incompressibility
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where 4 is a fluctuating Lagrange multiplier. In a third
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step we replace the numbers # by a third discrete pa-
rameter &3 = nd, with spacing d. Introducing the lat-
tice derivative Vyx2=x2—x%_,, we add a further
energy

B=inees i e )
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Here b is a fluctuating parameter which plays the role
of a Lagrange multiplier to ensure that, on the av-
erage, the distance between the surfaces possesses a
variation g%d?. The model parameter o characterizes
the range of penetration of one membrane layer into
the regimes of its neighbours. We now take the con-
tinuum limit on the &* axis, describe the stack by
x“(&, &) and arrive at the total model energy

Ewi=E[x%] _Nj d2& xA— ANxba?/2d? , (4a)

with

E[x¢ ]—7Jd E[(F7x4)2+A(d,x%)?

+(b/d*)(.x%)*], (4b)

with A= [d*¢=base area and N= number of layers
= [d&*/d. Integrating out the x¢ fluctuations gives
the free effective energy density per unit base area
and layer
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Ex= %Ttrln[(a,z)z—a,-},a,—(b/dz)(?%]

1
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ANa’J-dH xba?/2d* . (5)

At the one-loop, we find the free energy density fus-

ing the saddle point approximation, in which 4 is a

constant, so that

3 dkd 212
f=§<] (2n)31n[(k%)2+/1k,2+(b/d )k3]

_m-ibaZ/de) (6)

to be extremized in A, b (where #=3x/T). The ex-
tremal value of A defines the persistence length {=
1/ ﬁ over which the surface appears smooth. If the
surfaces were to move in infinite dimensions rather
than three, the saddle point approximation would, of
course, be exact. The integral in (6) can be calcu-
lated as follows

I- ;41; [242(In A= 1) +A In (£2d/ n /B 2)]

I 52

- E L, (7)
where

1/1 /—““—

| ae 1o V2
L(l)_ldxl In—— Nl (8)

with /=24d?/ 2n\/5. We have first performed the in-
tegral over k2 with cutoff 4 and then the integral over
ky= (zld/2\/l; k. For /> 1, L(!) can be rewritten with
k=1/ch#, ,=arch/=In(/+./I*~1) as

o0

sh?0

L=
(y=2|do6— T

o

1 ShBo
=2G- G(60)+ b +80ch290’ (%)

where

Ho 0
G(6°)=J-d0h_9

0
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is the integral which for 6,=co is equal to twice Ca-
talan’s constant G=0.915965594... . For large /, L(!)
has the expansion

L= % [In(2H)+1]- glﬁ [In(2D+2]1+....

(10)

Since we shall be interested in the phase transition
where A goes to zero we have to know L(/) in the
neighbourhood of small /. Then L(/) is the sum
L(0)+L,(!) with

90 . 5
sin’p
L =—2Jd N
! ) (M)cos%a

where g, =arccos . After a partial integration we find

~ 1 @0 Sin o
L(DH=2G+ + - 11
( ) G G(gﬂo) COS @ C052 % > ( )

where

@0
G(¢O>EG(1¢0)=£ oo

We need G(g¢,) near /~0, i.e. near g,~7n/2. Setting
Fo=m/2—gpo=arcsin(l/\/1—1?)

we have

G(fo)=—2G—imIn(tg $Go) +£(%o) (12)
with

g(z)zjdx—.x—,

sin x

and obtain the expansion

n 2
L(D==55+ 7 —inlin(//2)—3]
+—mPH P —nlt . (13)

To proceed it is useful to introduce the following

quantities,

16d2 ’

dCE (T[\/E))I/ZCO .

(14)

b0“§~ 2 ﬁ)( )

CO=2'0_1/2 1627()( 1/2
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Then, if we measure f, b, d in units of f,(d), by, dy
and drop a trivial additive constant we can rewrite

fsimply as

(SN RENL RSN ANCINDY
(15)

with L,=L+n/2/>-2/l. Applying d/db=3/db—1/
2bd,and d/dA=0/3A+ /A3, we find the extremality
conditions

1—\/B+%12(L2+1L’2)—-%1=0, (16)
2 4. 4

-z 5)+ —In— =0. 17
nl(2L2+[L2)+nln\/B (17)

Adding these we see that at the extremum fbecomes
simply

f=b+—§l\/5. (18)

For increasing values of / we calculate b(/) from (16)

and d(/) from (17) (also A(b) =21t1\/5/d2). The re-
sulting functions are plotted in fig. 1. In the limit of
large distances we use (10) and obtain

Jb=(4/9n)[1+31In(2]) ] +...,

A e
1(d)/1,(d) e

Fig. 1. The behaviour of the free energy f(d), the surface tension
A(d), and the Lagrange multiplier b(d) as functions of the dis-
tance between the membranes d. The normalizing quantities fo(d)
and b, are defined in eqs. (14). Below the critical distance, d.,
the tension vanishes and the microemulsion condenses into a la-
mellar phase.
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In(d?//b)=1+In(2]) +...
and hence 2/-exp(«);

L

OZ=§

d2__;_, \/B_’?Snaexp(—a)’

4 T
> —d? Ao =,
f e e

For d near 1, i.e. near d., /~0 we find

Jo=1- 2

— —C[In(/2) +§]+...,

In(d?/\/b)~ —inlIn(l/2)+*+...,
Ind?~ —4ni[In(l/2)+8/n%] +...,
f=1=P[2In(l/2) +16/7>+1] +....

Notice that our plot of the functions in fig. 1 ver-
sus d gives directly the temperature dependence at a
fixed distance parameter 4. We merely have to re-
place the d axis by

( 2ni/ T, )
exp\ T /7 TT)

In contrast to the case of an individual membrane
which has always a fluctuation generated tension, the
ensemble of membranes has a non-zero tension only
if the spacing is larger than the length d, which is re-
lated to the persistence length of a single membrane
{o by the last eq. (14). If we want to find a solution

for more narrow spacing, d<d_, we rewrite eq. (17)
as

16nx[3<(d,x*)*>—1]=0, (19)
with the expectation
n/d
2 d?*k j d%k
yay2\ _ = -
(9:x7) >‘2J(2n)2 e

K
X+ (0]

(20)

The treatment of a gap equation like (17) is stan-
dard in the O(N) non-linear g-model in three di-
mensions. There it holds for the expectation of a unit
vector field ¢ (u%)?) that

A {(u)?)—1]1=0, (21)
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with
dk
ay2\ — 2 —1
)y =] S e

This can be solved for large ¥ (low temperature) by
a separate treatment of the zero momentum state. As
long as the system has a finite volume, the integral
is written as ¥ ~'>, and (21) receives from the k=0
state a contribution ( VA) . After removing this from
the sum, the remainder can again be evaluated using
the integral. Now the gap equation (21) can be solved
for any large % with a very small A. In the thermo-
dynamic limit A —co the system is known to develop
a non-zero expectation (u“)» = U* that breaks rota-
tional invariance. One can show this also in an in-
finite system if one uses the effective action formal-
ism in which the free energy density is supplemented
by the field energy expressed in terms of the expec-
tation values U and the gap equation (21) reads

H ()= [1-(U)?]}=0. (22)

Thus, all that happens is that the expectation
< (u®)*) splits into a connected and disconnected
part. Eq. (22) shows that in the limit 7-0, U? be-
comes a unit vector implying perfect magnetic or-
dering and that the temperature dependence of (U%)?
is (UH)?*=1-T./T.
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The situation in the present model is completely
analogous. We supplement the free energy density
(6) by (1/AN)E[X?] where X“ is a non-zero ex-
pectation of x®. This replaces the gap equation (19)
by

(0:x)*yc=[2-(8,X7)*]=0 (23)

(times 8mit). This can now be solved for 7-0, ¥—
oo (where A=0). There exists a non-zero expecta-
tion {d,x%» =0,X* which breaks rotational invari-
ance. For instance, X' = U(!, X>=U{? and (23) gives
U?=1-T,/T. The “magnetization” describes in this
model the formation of lamellar planes of area U?A4.

This is how a microemulsion condenses into a stack
of membranes.
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