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PATH COLLAPSE IN FEYNMAN FORMULA.
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The Feynman formula, which expresses the time displacement amplitude {x,|exp(—tH)|x,> in terms of a path integral
1Y (S, ) TI*Y (fdpa/27) exp{ZY [ip, (X, —Xn_1) —€H (D, X,) 1} with large N, does not exist for systems with Coulomb — 1/
r potential and gives incorrect threshold behaviours near centrifugal 1/7? or angular 1/sin?6 barriers. We discuss the physical
origin of this failure and propose an alternative well-defined path integral formula based on a family of amplitudes that is invar-
iant under arbitrary local time reparametrizations. The time slicing with finite N breaks this invariance. For appropriate choices
of the reparametrization function the fluctuations are stabilized and the new formula is applicable to all the above systems.

1.1n 1938, Dirac [1] triggered the development of path integral physics by observing that the propagator for
an infinitesimal time ¢, (x|exp(—¢eH) |x’' ) [H=T(p) + V(%) is the hamiltonian operator, we shall work with

imaginary time] is approximately given by
L [ T dp
(x|exp(—eH)|x' >=~exp| | dt [ipx—H(p, x)] |~ —

2 SXPLp(x—x") —eH(p, X) ], (1)

0 — oo
where X= 4 (x+x’). This observation expresses the fact that in the limit of high temperature e=1/7—-0, quan-
tum statistics becomes classical. By decomposing in the finite-time propagator {x't|x0> = (x' |exp(—tH)|x)
the operator exp( —tH) into a large number N+ 1 of factors exp(—¢eH) with e=t/(N+1) and inserting be-
tween each pair of these a completeness relation [dx,|x,)» (x,| one finds the celebrated Feynman formula
[2’3 ] #1

Y N N+1 dpn N+1 X
o teo(=e 1o~ I ([ an ) [T (2 Jero( S it =) —et(ar, 201 ) @)
The exponent can be viewed as the discrete approximation to the canonical action .« [p, x] evaluated on an
equally spaced time lattice 7,=ne. The symbol ~ denotes an equality up to terms of order ¢ [this includes
e*(x, —x,_,)? terms since { (x, —x,_;)*)> ~&~!in the exponent]. A formula due to Trotter,

exp[—t(T+V)]= lim [exp(—&T) exp(—eP)]¥*!,
N-ooo

can be used to argue that no more than this order is necessary to obtain eventually, in the limit N—co, the correct
quantum mechanical amplitude. For sufficiently well-behaved potentials the argument can be made rigorous

[4].
* Work supported in part by Deutsche Forschungsgemeinschaft under grant no. K1. 256.

¥ Notice that going by history the name Wiener—-Dirac-Feynman formula would be more appropriate.
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2. Unfortunately, most physically relevant systems have potentials which do not fall into this class. As soon
as they contain an abyss of the Coulomb type or a centrifugal barrier (or the similar Péschl-Teller 1/sin’6
barrier at the poles of a sphere at fixed azimuthal angular momentum m), the Dirac relation is not true uni-
formly enough in x to allow for a Feynman formula. There is a simple physical reason for this. Consider the case
of an attractive Coulomb potential. The path with N+ 1 time steps may be viewed as a random chain in space-
time fluctuating in equilibrium in the neighbourhood of a 1 /r hole. If the chain has only a finite number of links,
N+1, it can easily stretch out and slide down into the hole, just as a single classical particle would do. Infinitely
many links (which for a finite time require infinitely short time spacings) are obviously necessary to provide
for enough configurational entropy to maintain a finite gyration radius which halts the collapse. A random chain
in D dimensions with k links on a simple cubic lattice has (2D)*=exp(kIn2D) configuration. If for a fixed
chain length the number of links k is increased near r=0 as 1/r, the exponent develops a repulsive potential of
the Coulomb type which prevents the collapse.

By the same token the Feynman formula cannot explain correctly the small » behaviour of radial wave func-
tions near a centrifugal barrier. A finite path slides down the barrier too easily. An infinite increase in entropy
is needed to convert the classical radial amplitude «cexp(1/r?) into the correct threshold behaviour /.

In the past there have been two attempts to circumvent this problem.

(1) In the Coulomb potential one has smeared out the singularity, used the Feynman formula, taken the limit
of large N, and gone back to the limit of a singular potential at the end. This procedure was followed in Monte
Carlo simulations [5]. In analytic work it is hard to implement.

(i1) In many so-called solutions of path integrals one uses the non-existing Feynman formula (2) as a starting
point and repairs this by ensuing illegal operations **, made possible by the knowledge of the solutions . (x) of
the Schrodinger equation Hy, = E.w,. This knowledge suggests the replacement of the infinitesimal integrands
in (2) by

J d;: explip, (X, —Xn_1) —eH (D, X,) ] ﬁfdkwk(xn)wl(xn_l) exp(—¢Ey) . (3)
At fixed e this is justified if x stays sufficiently far away from any singularity. With the right-hand side of (3) it
is trivial to integrate out all x,, using the orthogonality relations for w,(x). Since H is diagonal, this procedure
replaces the fluctuating path in x space by a completely stiff (i.e. time independent) path in k space thereby
converting the path integral into an ordinary integral over k, {x, |exp(—tH) |x,> =fdk w, (06 )Wl (x,) exp( -
tE,). While the result is obviously correct, the initial step is not. The wave function replacement (3) has intro-
duced a specific and correct regularization of the integrals [dx, near the singularity, Its knowledge, however,
was borne out of the Schrédinger equation, not of the non-existing Feynman formula.

As an example, consider a free particle in radial coordinates. By using the well-known radial Schrédinger wave
functions for an azimuthal angular momentum , a simpler, by projecting the cartesian D=2 result into a fixed
m, (X lexp[—t(3p) x> =2 ( l/m ) (Fos 7at) m exp[m (@, —0,)/2n], we find that the radial amplitude
can be written in a certainly valid path integral representation as

N dr, ~ N
(rb;ralt)m= 1:1] J‘\/z_ﬂ(‘,' exp('ﬂm ) (43)

where 7%, is an effective action ([, is the modified Bessel function)

N+l<(rn_rn—l)2

A y=— Zl 2 —In[ 2nrnrn——l/81m(rnrn—1/8)])- (4b)
Each term in the sum corresponds to the right-hand side of (3). Now, for r,, r,_, far enough away from the

#2 A good sample of such illegal operations can be found in table 1 of the recent review article by Bernido, Carpio-Bernido and Inomata.
Also many other papers which should have been quoted in that table fall into this class.

314



Volume 224, number 3 PHYSICS LETTERS B 29 June 1989

singularity at the origin, r,, 7,,_ , > ¢, the asymptotic expansion of the Bessel function 7, gives indeed the classical
action of the Feynman type
&8 ((rn—rn_m m2—1/4>

Y= 4
,,;1 2¢e ¢ 2r,,rn_1

(4c)

so that (3) is correct. Unfortunately, this is not true uniformly enough in r to allow for this replacement in the
path integral. For smaller r, the effective action can only be expanded in an asymptotic power series in gk/rk
which does not converge for any &/r? and cannot be used at all near r=0. The short-time amplitude cannot be
approximated by the classical one. In fact, the partition function with the free system subtracted reads Z= — 3m
while the classical partition function is Zy = — [1 (m?—1}) ]!/2. More dramatically, with (4c) the path integrand
of the Feynman type (4a) would blow up for m =0, i.e. the path would collapse into the origin. The path integral
(4a) is only correct with the action (4b). But this information stems from the Schrodinger equation, not from
the Feynman formula.

A similar situation holds for 1/sin?@ potentials if one makes use of the limit P* (cos 8) —J,,,(00) /1™, >0 (J,,
is the Bessel function).

3. This suggests one possibility of salvaging a correct path integral formula for quantum mechanical ampli-
tudes in the presence of a centrifugal barrier. We separate the barrier out of the potential and write V="V_+
V.., where V,,, is smooth in x. Now the Trotter formula is valid for the splitting {exp[ —e(T+V,)] exp[—
eVem ]}V Hence a correct path integral valid for an arbitrary smooth V, reads

(rb;ralt)m= IL—-[](J\;;_;E)exD(d%_E il Vsm(rn)>= (5)

i.e. the classical free particle plus barrier part in the Feynman formula, %, has to be replaced by the full quan-
tum mechanical /%, of (4b). Only V,, enters classically the short-time amplitude.

4. A much more powerful formula is obtained by allowing for the above described increase in entropy by
means of position dependent time intervals which shorten to zero near a singularity. The inspiration for this
comes from the Duru-Kleinert solution [7] of the Coulomb path integral and its explicit time sliced form [8].
Generalizing this we consider an infinite family of amplitudes, some members of which will be seen to possess
a bona fide finite step path integral representation. This family is given by

K(Xoty; Xala|8) =f(Xos to) ' "Xt | €XP[ =A%, DHH=E)f ' =4(%, 1) ]| Xala DXy ) (6)

with an arbitrary pseudo-time s and parameter A (preferably A=1). Here |x¢) are states localized in space and
time on which the operators p, E have the differential matrix elements {xt|p= —18, {xt|, {xt| E=id,{xt|. For
the sake of generality we shall allow H to depend explicitly on z. The integral over s in(5) is obviously the usual
quantum mechanical amplitude

Xy [ Xala) = j ds K(Xoto; Xalal$) = (H—E)~'6(Xp—X,)6(t,—1,) . (7)
0

It is remarkable that this is true for any function f(x, ¢) and we shall call this property of (7) local time repara-
metrization invariance. In order to calculate this amplitude we decompose s into N+ 1 pieces &=5/(N,+1)
and insert the N,+1 completeness relations [dx, [ dz, |x,t, > {(X.t,| =1 thus obtaining a product of integrals
over small-s amplitudes:

(Xl | exp(—{ef (% O H(B, %, D) =E1(%,0)' 7P [Xu_ita1 ) (8)
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Notice that the time reparametrization invariance of (7) is broken by the finite —eg; “time” slicing. The
Feynman formula would be retrieved for the special choice f(x, ¢) = 1. In the presence of a singularity in H the
invariance is broken so badly that it is impossible to obtain the correct amplitude for f(x, t) = 1. Exploiting the
new “gauge” degree of freedom we may, however, choose the function f(x, ¢) to vanish appropriately at each
singularity. In this way we can shorten the local time intervals e=¢, f(x, t) so that the chain entropy prevents a
collapse.

There is then no problem in obtaining a well-defined finite-N, path integral formula for this amplitude which
reads

N N+1 dp dE
K s )= O )"0 07 1T ( s ) T ([ L2 [ L2 ) expars, (92)
n=1 n=1
where &/ is the N }'! step decomposition
N+1
d?’s= Zl {ipn(-xn "'xn—l ) _i-En(tn _tn—l)_exf(xna zn)l[H(pna -fn: tn)_En]f(xn—la tn—l)l_a} (9b)

of the classical action
.t E)= [ A5 [px' —E ~fx ) (H=E)) (%)
0

in the phase space of spacetime paths x(s), (s), p(s), E(s) parametrized by s(' =d/ds). The energy integra-
tions can be performed. This forces the fluctuating time intervals to be equal to the space dependent ones A¢, =
& f(X,, t,), resulting in the alternative formula

K™ (Xl Xala|8) =05 1) (%0 1) ] U dx”> [ (J 92%)

n=1 n=1

Ns+1
X(S(tb_ta_gs Z f(-xnstn)lf(xn—latn—l)l_i)exp(divi) > (Ioa)
n=1
where
Ns+1 ] _
vavf;.: Z [lpn(-xn—xn—l)—esf(xna Zn)AH(pnax_n, tn)f(xn—la tn—l)l_l] . (IOb)
1

n=

In the common case that the energy is independent of ¢ we can restrict ourselves also to ¢ independent slicing
functions f(x). Then the amplitude depends only on the time difference and we may conveniently integrate
(10a) over [dt, exp[iE(t,—1,) ] obtaining

(o]

_ N N+l [ dp
[ty expIiEty— 1) 1K™ Cots 0t ) =) ) ] (fdx,.) I ( = )exp(wﬁg (11a)
n=1 n=1
with
Ns+1 . .

divi = Zl {lpn(xn —Xn—1 ) _asf(xn)A[H(pm x_n) _E]f(xn—l)l_j} . (1 lb)
This is the path integral representation of the auxiliary amplitude

S0) ' ol exp [ = AR (H—E)f(£)' 4] 1% /(xa)* . (11c)
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Integration over s approximately by performing the sum ¢ X% _, and doing the energy integral dEexp[—
1E(t,—1,)] gives again, in the limit &,—0, the usual Green’s function (7).

The integration of eqs. (11) can proceed after a convenient variable change. This needs some care since it is
usually a non-holonomic transformation [9] which brings the kinetic term f{£)*(3p?)f(£)' ~* to the standard
form 4p2.

5. As an example, we write down an existing path integral for the radial motion with a centrifugal barrier.
Take the above discussed case of a free particle in two dimensions. The regularizing function f/(x) has to remove
the barrier, i.e. the proper choice is f(x) =r?. After a change from r to exp (&), this implies the space dependent
time intervals Af=¢,exp (2£), we have

7 o Ns Ns+1 <
(irion= | agem-igne 5 11 ([oa) T ( [L )empiarns (122)
with
A= L (ip§(& =G —a (P + im* = Eexp(28) ]} (12b)

We may add a further Coulomb potential. This introduces a term —e?exp(&,) and the action (12b) becomes
that of the Morse potential. The same thing happens to the radial path integral for the Coulomb potential in any
dimension D with angular momentum /, in which case m=41D—1+/. Likewise for a radial harmonic oscillator.
After a change of variables & =2&,, mc=imgo. . . the last two amplitudes are the same [apart from a
trivial normalization factor (rC; r€|6)C=4/rQrQ (rQ; rQ|1)S]. This operation proves the path integral equiv-
alence of a Coulomb system with D, / and a harmonic oscillator with D°=2D—-2, [°=2]. A previous attempt
[10] based on the two weak regulator function f(x)=r must be considered as failed (in spite of the author’s
claim to the contrary) since it only manipulates non-existing time-sliced expressions with collapsing paths.

Notice that the Morse path integral (12) must be integrated as it stands and not in the reversed fashion found
in the literature [11], where it is transformed into the meaningless Feynman path integral of the Coulomb plus
centrifugal potential.

6. Similarly, the action with the angular barrier 1/sin?6, must first be transformed with f=sin?6, d¢=ds sin?6,
sin’f=1/ch’x to the modified P6schl-Teller action before it possesses a time-sliced path integral.

7. Let us finally remark that there is no way, in principle, of deducing the time reparametrization invariant
amplitude (7) and the ensuing path integral formulas (9)-(11) from the non-existing finite-V Feynman for-
mula just as one cannot construct an analytic function from the knowledge of its value at one singular point.

The author thanks Dr. W. Janke, L. Semig, and J. Zaun for numerous discussions.
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