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We show that non-relativistic fermions can be described by a path integral over fluctuating orbits x (¢),
IL (J@x® () Y exp{isd [x, ] +iZ,; ., af [x ¥ ]}, where o [x " ] is the usual action and o4 [x (¥ ] (with x V) = x () — x ) ) isa top-
ological interaction that accounts for the fermionic properties. In D=1 dimensions, [ x)=rfE d1x()d(x(1)) and in D=2,
[x]=]kdt (Exx)/x2

1. A well-known shortcoming of Feynman’s path integral for non-relativistic particles is its inability to de-
scribe the quantum fluctuations of particle orbits with Fermi statistics [1]. Although there is no problem at the
level of second quantization, i.e. for field fluctuations, where the use of anticommuting Grassmann fields leads
to the correct statistics, no satisfactory description is available at the first quantized level, i.e. for fluctuating
individual orbits. In this note we want to present such a description. It is based on adding to the action an
appropriate topological term which guarantees completely antisymmetric wave functions when summing over
all paths.

2. Consider two ordinary distinguishable particles with a relative interaction ¥(x‘!’—x‘?)) described by an
orbital action
1)
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The standard change of variables to center-of-mass and relative coordinates X= (M (Vx (V4 M %2/
(M +MP ) x=(x")—x?) separates /into a free center of mass and a relative action
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with the reduced mass g=M VM@ /(M + M) ). The time displacement amplitude to be calculated facto-
rizes into that of an ordinary oscillator (X7, | X,t,) and a relative amplitude (xut, | X2, ) with well-known result.

Let us now introduce the fermionic character into the description. First, we take care of the indistinguishabil-
ity and restrict x to the positive semi-axis x=r> 0. There the completeness relation of local states reads

jdr}r) {rl=1. (3)

On introducing the orthogonality relation we have to specify the bosonic or fermionic nature of the wave func-
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tions. Since these occupy only symmetric or antisymmetric wave functions, we take for {r,{7,) the correspond-
ing representations of the d-function

T dp .. {cos pr, cos pra}
= —_— = — . 4
rolra) .[ T 2{sinprb sin pr, ro—ra) (4)

These may be rewritten as
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The infinitesimal time displacement amplitude is then in the canonical formulation

(ruelrn_10)=(rylexp(—ieH) 7oy )

f 0P (expLip (=) 1 exP[ip(ra+ras) 1} expl—icH (5, 72)] (6)

where H(p, x) is the hamiltonian of relative motion. By chaining up N+ 1 of these factors we find the amplitude

N 3 N+1 3 N+1 N+1
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for bosons and fermions, respectively. We remove the + term by extending the radial integral over all space and
write

= 5, 11(J o)1 (] %)

xp=trp n=1

N+1
Xexp(i Zl {[pn(xn_xn—l)]"EH(pn,xn)+7r[a(xn)_a(xn—l)]}) ’ (8)

where for bosons 0=0 and for fermions g(x)=8( —x), the reflected Heaviside function [i.e. o(x)=0, 1 for

xz0] and xp=xp4 1, Xa=Xg=1>
It is easy to calculate these path integrals for free particles. In the bosonic case we obtain immediately the

symmetrized amplitude

— 1 }l ( b a) —
(rbtblrata)_\/ZTci(tb—-ta)/Mliexp( 3 (tb——t))+(rb "b)]- 9

The spectral decomposition of this contains only the symmetric wave functions. For fermions we observe that
the phases o cancel successively except for the boundary term

exp{info(x,) —0o(x,)]} . (10)

On summing over x,= *ry in (8) this term causes a sign change of the X, == —r, term and leads to

_ 1 #( ro—"ra) -
(rb[birata)—‘ ﬁm(lb—ta)/M[exp( 2 (tb—t)) (rb rb)]’ (11)
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which contains only the antisymmetric wave functions.

Since x, p cover the entire space and ¢(x) enters only on the boundary we see that it is possible to add, in the
action, any potential ¥'(x) and, as long as the ordinary path integral exists, also the integrals with the additional
o-terms in (8) can be done.

It remains to take the continuum limit of the time sliced action in (8), yielding

A= Jdt [px—H+nrx(t)0,0(x(t))]. (12)

ta

The second term can also be written as
1) o

,524_—..—71:jdtfc(t)é(x(t)):—njdta,e(x(t)), (13)
la fa

which shows that it is a purely topological term.
It is easy to see that for many fermion orbits x (¢), i=1, .., I, the interaction %, ; #£[x ] leads to com-
pletely antisymmetric wavefunctions. Indeed, eq. (8) becomes

_ . I TN/F \N+T dpt
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n=1 i i<j

where Yp(;, is the sum over all permutations of the orbits. The phases exp[ing(x)] produce the complete
antisymmetry.

3. Consider now two particles in two dimensions. Let the relative motion be described in terms of polar
coordinates. The scalar product of localized states is

honirgsy= (Ao § L(orn)La(ons) explim(p,~0.)1/27. (15)
o

m=—o0

For indistinguishable particles, the angle ¢ is restricted to a half-space, say ¢e (0, 7). When considering bosons
or fermions, the phase factor exp [im (@, — @,) ] must be replaced by exp{im(p,—¢.) ] Lexp[im(gp+n—9.)],

_respectively. On chaining up N+ 1 of such amplitudes the * terms can again be accounted for by completing
the half-space in ¢ to (—7, 7) and adding the field o(¢). Inserting a hamiltonian and going back to euclidian
coordinates x,, x, we arrive at the relative amplitude

xonteity =( [ 9% [ L expiahla1 Histlx)+ (5y-s—32) ) (16)

with obvious time-slicing as in (8). In polar coordinates, 4 looks just like (12) but with x replaced by ¢:

L4°}

sh=1 | & p(3,0(p(1)) - (17)

ia
For more than two particles the amplitude (16) is generalized to the two-dimensional analogue of eq. (14).
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More adapted to the periodicity in g of the system we may replace o(¢) by a step function o,(¢), which jumps
by 1 at every integer multiple of 7. Since o, depends only on ¢ we can also write

Ja(f:nJ-dti:A((a), (18)

where A=00,(p).
When calculating particle distributions or partition functions, i.e. for periodic boundary conditions, this cou-

pling is invariant under gauge transformations

A-A+04, (19)
with smooth and single-valued functions 4, i.e.
(a,aj—aja,)/l(x)zo. (20)

We can therefore replace o,(¢) by any function of x which changes by one unit when going from ¢y, to g, + 7,
most conveniently

1 1 X3
dp(x)=;¢(x)5;zarctgx—:- (21)

Then the action (18) becomes

1] v .

. X X;

= [arzopeo= [are, 23, (22)

la fa *
where ¢ is the antisymmetric 2 X 2 tensor. Just as (13), this is again a purely topological interaction. It is the
same as the action of an infinitesimally thin magnetic flux tube, of elementary flux @=7c/e, which makes the
tube invisible with no Bohm-Aharonov scattering [2]. The path integral, however, is different in the present
case by the extra paths running to the reflected final point — x.

4. In summary, we have succeeded in taking care of the identity of the particles and the fermionic nature by
the simple interaction terms (13) and (22). These terms cause the wave functions to be antisymmetric when
summing over all paths from the initial point x, to the final points x, and the reflected —x.
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