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We determine the stiffness dependence of the deconfinement temperature for a string with an extrinsic curvature term in the
limit of infinite dimension 4, where the system can be treated exactly. We also discuss the importance of the square-root singularity
of the model in relation to previous perturbative calculations. This singularity invalidates perturbative results for the string ten-
sion at moderately high temperatures where the deconfinement takes place (and, by analogy, for the potential at short distances).

Recently there has been considerable interest in
studying a model of strings with curvature stiffness
proposed independently by Polyakov {1] and by one
of the authors [2]. Such a string is apparently a good
candidate for the string between quarks in QCD. To
compare the two objects we must compare physically
observable quantities which can be calculated in both
cases. A good candidate is the temperature depen-
dence of the string tension and, in particular, the
thermal deconfinement temperature where the ten-
sion vanishes. The string with extrinsic curvature
stiffness is characterized by two parameters, the total
string tension M? and the stiffness @ ~! which is a
dimensionless number. For dimensional reasons
the temperature behaviour of the tension AM’=
M?(T)/M*(0) is a function of T /M and &. The re-
duced deconfinement temperature 774/ M depends
only on & and the dimension in which the string
moves. For a string in QCD, on the other hand, the
dependence is on the symmetry group and the space
dimension (see table 1). If there is to be any match
between the two, the stiffness parameter & should
contain the information on the symmetry group. This
is why it is important to study the & dependence of
the string in detail.

Actually, since the theory requires renormaliza-
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tion, one must specify the scale u in which the renor-
malized &(u) is prescribed. This ¢ may be chosen to
coincide with M. Another possibility to specify & in-
directly is via the fraction of the total tension that is
generated spontaneously from the curvature fluctua-
tions. We shall use the parameter v to denote the ra-
tio M%s/M?2, =Nambu-Goto tension/spontaneous
tension. The total tension is then

M*=ML(1+v). (1)

As of now there exist several studies of the thermal
behaviour of M?(T). First, there is a complete and
exact solution for the case d=co and v=0 (no
Namby-Goto term, only spontaneous tension) [4].
Also for »+ 0 the exact equations have been derived
[5] but due to their complexity they were not evalu-
ated explicitly. Further, there are two perturbative
calculations in the limit of large stiffness, @—0 for
d=co [6] and for any d [7]. Finally, there exists up-
per and lower bounds to the deconfinement temper-
ature [8] calculated in the same small & limit

0.69K T3/ M<0.98, (2)

which we do not agree with as will be explained later
in this letter.

It is the purpose of the present letter to give a de-
termination of 79 for d=co and all v using the ex-
act equations and to discuss and compare with pre-
vious results and with QCD data (see table 1).
Particular attention is devoted to the relevance of the
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Table 1
Deconfinement temperature over string tension 79/ M, for a stiff string model and comparison with QCD values obtained from Monte
Carlo simulation (see e.g. ref. {3]). As of now, there is no direct comparison since the simulations include a grand canonical ensemble

of closed strings in the vacuum. In contrast 1o the single string in our model.

Theory
SU(2), SuU(2) SU(3) SU(64)
Monte Cario 0.9410.03 0.74£0.10 0.48£0.05 0.49x0.04
Stiff string model 0.670 < T9/M<0.691
singularity of the model near the deconfinement
: A =ch(ﬂcxtMlzol (6 )

transition which the perturbative approach misses.
The reader interested in the details of the derivation
of the d=o00 equations may consult the elaborated
presentation given in ref. [5]. All T’s appearing in
this letter correspond to “extrinsic temperatures”,
T.,., as introduced in ref. [5], defined by the tem-
poral periodicity in the extrinsic space, x®—x%+73.

The model of strings with extrinsic curvature stiff-
ness has the following action [1,2]:

A:Mﬁ;ojdzé\/g+ ii&fdlé\/g(nxﬂ)% (3)

As stated above, it will be studied in the large-d ap-
proximation. For this we introduce Lagrange multi-
pliers 4q, 4, in the usual way [5] so as to fix g;=p,J;
to be the intrinsic metric. After integrating out the
transverse fluctuations the action can be written as

A=4(d=2)Rex Bexen/P0P1 FTo0s (4)

where the energy density fZ, is given by

4
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The functions 4f7(1, T) and 4f°(1, T, ) contain the
isotropic and anisotropic finite temperature correc-
tions, respectively.

After introducing p=p,,; (T=0), fo=p5./p, the
action becomes

I=4(Zo+41), o

i
]

108

where M2, =ML (T=0)-M%(T), with the total
tension of the infinite size system

d-21,(1+v)p

2 4 (67)

M (T=0)=
and the temperature dependence collected in the re-
duced tension

- 4r
M2 A(T)=/bop: —— T "
lo‘l( )— Pob z”(l : U) tot (6 )

which is normalized so that M% (T=0)=1.

Thus MZ,(T=0) is the sum of the Nambu~Goto
tension and the spontaneously generated string ten-
sion [9]. Varying the action with respect to jo, 4, Z
and J we find the two equations for jy, j,

- -1
4
ﬁo=(1+V)(1—5)(2—‘1—1[f{';z+2%1/> ,  (7a)
4n -
/31=(1+V)(1+5)(Tf£1) . (7b)
Substituting this into /7, we obtain (4, =1Ap/4nT?)
I(.2 T2 2
LI [ ST SO R
f'°‘_47r(2 3 r—In 753, +4S|>
_,1'_(2,/1+5
4n Ar
+;—§ (A++A;—,/m2+ﬂ.7-—-m)—5), (8)
T m=1
where

T=/pi,(1+v)/dne?
=./ l/2n'(d—2) C;'Mlm(O),
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and

,—ll:f (Mt Ay —m—ir/2m), (8")
Af=/m*+i-(1+3)(1£8,)/2, (8”)
B, =/1+8m?/[Ar(1+5)]°. (8")

All quantities of interest are now given in terms of 4,
¢ and the parameter ». The stationary point of the
action is given by the two gap equations for A and &:
The first being

y—In 7:’ +25, + '\/——6
T

221 (24, —1/J/m+ip) =6

>J‘I ot

=0, (9
with
X 1+d) 1 i
= [fi; *I;
1 1Y/ 1 1 ,
Sl gE-2)) o)
The second being
1 +8 Y 5,1

with

1
dAr(1+9)8,,

x[ﬁ;-4;+m2</%~%)]. (10")

We solve eqs. (9), (10) numerically. Starting with
eq. (9)at §=0and =1, for some fixed v, the value
of X is then fed into eq. (10) to obtain a better ap-
proximation for J. After a few iterations we see that
the procedure converges. Then we evaluate the nor-
malized string tension eq. (6 ) as a function of T (in
units of M2,(0)) for a range of values of the param-
eter v (solid lines in fig. 1). Defining the deconfine-
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Fig. 1. The normalized string tension as a function of T (in units
of M2,(0)). Solid lines represent plots of the exact solution
eq. (6") described in the text. Dashed lines come from a two-
locp calculation of the string tension done by the authors [7].
Note how both approaches differ for T close to 79, In particu-
lar, perturbative results miss out on the square-root singularity
of M2, at T=T?F and crosses over the 79 axis. Thus, a deter-
mination of 7 %< from a perturbative calculation is only reliable
in the extreme v —co limit.

ment temperature 7°9€ as the value of T for which
M?*(T) =0, we are then able to extract and plot all
these values as a function of » (fig. 2). The parame-
ter v is related to the stiffness or inverse coupling as
follows:

dn
V= — 11
@ 1+ (11)

This can be found by studying the infinite size system
gap equations {9].

Thus, for very weak and very strong couplings
(v—o0, v— —1 respectively) we find that the decon-
finement temperature has in either case the Nambu-
Goto value of T9¢=0.691. Between the two ex-
tremes the curve is lower than that limit (see fig. 2).
There is a minimum which constitutes a lower bound,
T4 0.670. This occurs for v= 3. Thus we set the
following limits on 7 9

0.670< T/ M,,,(0) €0.691 = TR/ M (0). (12)

Note that these limits for 79 are in disagreement
with the earlier ones of eq. (2) given by Xiaoan and
Viswanathan [8]. For &=0we find the Nambu-Goto
deconfinement 79¢=0.691 although the string has
quite different physical properties, being infinitely
stiff. This somewhat surprising feature was observed
earlier in a calculation of the string tension [6,7]. For
@& = oo which is the point a=co of ref. [ ] we are back
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Fig. 2. The deconfinement temperature as a function of ». Note how the negative and positive section of the “x” axis have different
scales. For v— — | and v—co the curve approaches the Nambu~Goto value. The large-» limit was obtained analytically from the equation

M, =0,

at the Nambu-Goto value while they [8] find a higher
deconfinement temperature by a factor of ﬁ The
result of ref. 8] must be wrong since, for G— oo, the
effects of the extrinsic curvature term must disappear
(see eq. (3)), being left with the old Nambu-Goto
model. Moreover, apart from the value of 7% at
&@=0 a plot of T®**=1/8. of their eq. (28) would
disagree completely with our fig. 2. The reason for
this is that their result is obtained from a one-loop
approximation. To prove that this is indeed the case
we use our previous work on the two-loop string ten-
sion (eq. (14) of ref.{7]). We discard the &* piece
and piot the remaining tree -+ one-loop contribution
as a function of 7 (fig. 3). The plot reproduces their
limits {81 (see eq. (2) above). Thus, we observe that
a perturbative calculation fails to determine the de-
confinement temperature reliably. The reason is that
the deconfinement occurs at the singularity, which the
perturbative calculation cannot determine. As in
other models with a critical point the region beyond
the transition require a different approach. In partic-
ular the deconfined state will certainly be filled with
a grand canonical ensemble of closed strings. In refs.
[7,10] we have performed perturbative two-loop
calculations of the finite-temperature string tension
and the static quark-antiquark potential respec-
tively. Naturally one may wonder about the range of
validity of these results. In the case of the finite-tem-
perature string tension we have now a good under-
standing of the behaviour of the exact solution. In
particular we know that this solution has a square-
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Fig. 3. Perturbative one-loop string tension as a function of T/
M for various values of v. For extreme values v—oo, —1 {corre-

sponding to &-0, cc. respectively) the limits of eq. (2) are
reproduced.

root singularity, since \/ﬁ_, becomes imaginary when
ST, crosses the temperature axis and turns negative.
In ref. [7] we have expanded the perturbative (i.e.,
small &) tension further, once for small and once for
large A (Ar=Ape/4n2T 2~ @M?/4n?T2+...). From
the present finding we see that of these two the large-
Arexpansion is reliable (see fig. 1) since for T—0 we
are far away from the singularity. The small-A, ex-
pansion, however. cannot simply be understood as the
limit 7— oo because the perturbative curves miss out
on the singularity. For small enough &, however, we
may trust the small 7 expansion only for a certain
intermediate range of T which lies sufficiently below
the singularity. We have studied this competition of



Volume 225, number 1,2

limits numerically and in fig. | we compare the string
tension M2, (T /M2,.(0)) for two values of ». Solid
lines are curves obtained by plotting M2, as given by
eq. (6”). Dashed lines give the string tension from
the perturbative two-loop calculation reported by the
authors [7].

In analogy with this findings we can expect similar
problems to exist for the quark potential of the model.
In particular, small distance results are not to be
trusted without further studies. Unfortunately, the
problem is in that case far more difficult to analyze,
even with the help of a computer, since the gaps
(Lagrange multipliers) become r-dependent [11].
However, an analogous situation would indicate that
perturbative small 1z ( = @M2R?/%?+...) results (i.e.
eq. (5.8) of ref. [10]) are reliabie at best at inter-
mediate distances, breaking down for small R. Un-
fortunately, this casts doubts on one of the more at-
tractive predictions of the model: The 1/R
dependence of the static quark potential at small R
being —xn/6R [11], which agreed so nicely with the
analysis of Eichten et al. [12] (—0.52/R).

In conclusion we have determined the deconfine-
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ment temperature for stiff strings as a function of the
stiffness parameter for d=co. This has been achieved
by a numerical evaluation of the exact solution of the
model. Our main results are given by eq. (12) and
fig. 2.
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