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Isoscalar Nucleon Form Factor from O (4,2) Dynamics*
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The most general theory of isoscalar form factors with 0(4,2) as dynamical group and a purely algebraic
current operator has been constructed for a fermion representation space. Adjusting one free parameter

appropriately, we obtain for the JP=

Cus () =
w50 =

4* ground state

GeS(H) =

3 ¢/0.71
(l—t/O.Zl)ﬂl: +(1—t/0.71) ’

u5 is determined to be uS= —}. The agreement with experiment is excellent for G 8/uS, moderate for G5,

and bad for p*.

I. INTRODUCTION

N a previous paper,! the dynamical features of the
two maximally degenerate unitary representations
of 0(3,1) have been extensively discussed. The electro-
magnetic form factors have been calculated, and they
are found to decrease too slowly as a function of the in-
variant momentum transfer . If one uses the other uni-
tary representations of O(3,1), one can improve the
shape for small momentum transfers.? Indeed, when re-
stricted to this range, the theory has been able to re-
produce the regularity in the pionic decay widths of
baryon resonances astonishingly well.? For larger ¢, how-
ever, the form factors start oscillating, a feature that one
does not expect on general grounds.
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To obtain better results, mixing of O(3,1) representa-
tions is needed. This need is also indicated by the fact
that more than one O(3,1) tower seems to exist. There
are, for instance, four /=%, j=% resonances in the
Rosenfeld tables. If several towers do exist, then the
physical particles will, in general, be mixtures of these
towers.

Such a representation mixing occurs most naturally if
one formulates dynamics in terms of a group larger
than 0(3,1).# A model for such a dynamical structure is
given by the group theoretical formulation of the elec-
tromagnetic interaction of the H atom. There, the
group O(4,2) turns out to be the dynamical group.s—°
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For this model, the mechanism of representation mixing
and the form of the electromagnetic coupling have been
studied in considerable detail.? It is therefore quite
tempting to try to find other representations of 0(4,2)
which might have a physical interpretation.

The next simplest representation of O(4,2) which in-
cludes parity and permits a dynamical theory con-
structed in a way similar to the H atom contains the
fermions with spin parity

8+ ... (n—%)*foreveryn=1,2,3, -,

There are, in fact, experimental indications for such a
level structure in the isospin-} baryon resonances. The
lowest states 3+; 2+, 3% 2% etc. have been found, and
the empty places may yet be filled (see Fig. 1).

We therefore postulate O(4,2) dynamics for the
isospin-3 baryon resonances in the sense defined in Ref.
2. We can then construct the most general theory of
transition form factors with O(4,2) dynamics. This will
be done in this paper. We shall not carry isospin ex-
plicitly through the calculations. Therefore, our results
are to be applied to the isoscalar properties of the bary-
ons. That this identification is possible can be seen by
adding isospin trivially to the states and writing the
0(4,2) generators as isoscalars. All calculations are then
exactly the same as if one neglects isospin completely.

II. THE REPRESENTATION SPACE

We use the representation of 0(4,2) in terms of crea-
tion and annihilation operators a.,',a,,b,,6, (r=1, 2)
constructed with the Pauli matrices o and C=1o,5:

L¢j= %(a“aka-l-b"akb) = Lk ,
Ly=—1(a'oa—0btod),

L= —(ate,Cbt—aCo.d),

1
I,45= —(a"CbT— OCb) 5
2 (2.1)

1
L.~5 = ‘2—_((110’.‘Cb1'+ aCa;b) y
7

Ls=3%(a'Cb'+aCb),
L55= %(a*a—i—b*b—i—Z) ’
with the commutation rules

[LIW)L.H)\] = ig;va)\ ,
1

2.2)
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F16. 1. The levels of the known isospin-} baryons and a possible
assignment of the 0(4,2) quantum numbers #,j¥ are given.

Parity is defined by

I

b, b —a (2.3)

under which Ly, Lss, L, and L are invariant, while
M, Lis, Ly pick up a minus sign.

Using the maximally degenerate boson representation
of the H atom, which was given by

|ndm) = (=)m(21+ 1)1
y ( RSV 25V

$(m—m+tn)

l
) |n,mom), (2.4)

tim+nm—ny) —m

with the parabolic wave functions

| nangm)=[n1!(na+m) sl (n1+m) 1 172
Xalfnz-l-magnlblfnﬂ'mbifnz| 0) (25)

for m>0 (for m< 0 substitute n; — n;—m and #n, — 7
—m everywhere on the right side), we now construct
the fermion states

b it
mjim)= ()2 D2 Yot 4120

Yy m—r —m
X[at (= )20, n j—% m—r). (2.6)

Parity is again defined as in (2.3), but additionally, we
must specify
11| 0)=4]0);

hence the parities of |#jm=) are £, respectively.

One can easily convince oneself that the space (2.6)
is irreducible under O(4,2) extended by parity, and that
the levels are

2.7)

JP=1k3 ... (L)% (2.8)

for everyn=1,2,3, ---.
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Explicitly, the states for n=1, 2 are given by
| 1%r,:|:)=i(a,*+ib,“) [0Y; r=1, 2,
V2
| 233+ )=1%(a:"Fib:")a:'8,|0),

i
|2%%=|=>=§ V—3(dzT:Fib2T)deblf (2.9

1
+—(a1tFib,) (a1szT+dsz1')] [0},
3
1
| 23 )=—"(ar'=£ib:1) (@102 — a'8:1) | 0).
V6

There exist other extensions of 0(4,2) by parity. As
we shall show, however, in Sec. IV, the one given here
< is the only one which leads to a nontrivial theory with
0(4,2) as the dynamical group.

III. THE MOST GENERAL MODEL

Using the electromagnetic theory of the H atom as
a guide, we construct the most general possible theory
of the same type on the fermion representation space.
Putting the initial particle at rest and boosting the final
one in the z direction with rapidity { [=tanh~(z/c)],
we obtain a current with the structure®

Fr(F) = (2| eiS2TreiMteist| 1) (3.1)
where the M; (=1, 2, 3) are Lorentz generators in the
Lie algebra under which I'* transforms like a four-vec-
tor, while S1, S» are arbitrary rotational scalars. Accord-
ing to the dynamical group philosophy, I'* and .Sy, S2
must also be elements of the Lie algebra.

Since M; is a vector under the rotation subgroup of
0(4,2), it can at most be a linear combination of L,
Lis, Ly; and the commutation rules

[M,‘,Mj:|= —iL;j (32)
fix this combination to be of the form
M ;= coshe(cost L;z+sint Lig)+sinhe L. (3.3)

Observe now that this M; can be rotated by operators
of the form ¢*S into L;;, namely,

Lis - 6”‘45 € —iLBGfMI,eiLssre—iLu e

(34)
We therefore can assume, without loss of generality, that
M §i= Lia; (3 5)

otherwise we could bring M; to this form by changing
S and I'* appropriately.

Next, we can assume that S contains only Lss and
L4e:

S1,2=0,,sLss+A1,0Ls. 3.6)
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The only other possible term Lsg could always be taken
out of the matrix element (3.1), giving only an over-all
phase change, since L;g is diagonal on the Hilbert space.
©® and A are tilting angles which we allow, as in the case
of the H atom, to depend on #.

In this work we shall assume, for simplicity, that the
current operator I'* is a purely algebraic one. This
means that we exclude for the time being expressions
which use the external momenta of the interaction ver-
tex to construct vector operators, like convective currents
Pu, PeLyg, or like g#, g*Las, etc. Such expressions will, in
general, be needed in a complete theory, since they also
occur in the current of the H atom (see the second paper
of Ref. 6). The effect of such terms will be studied in a
forthcoming paper.

Under this assumption, the current operator can at
most be a linear combination of all four-vectors in the
Lie algebra, which are

I'i#=(Lse,Lss)

and
Ty#=(Lss, — Lis). 3.7
Say that
I'#=gal'#+b1*, (3.8
If we define now the tilted operators O’ as
O’ =¢150¢iS2 3.9

then the current F# can be written as
Fr= <2! I‘p’e—iszgiMafein& I 1)

=2 QT [n)r|G(@)|1), (3.10)

where we have inserted a complete set of states and
defined

G(K_)Ee—i&eiMs{eiSl. (3.11)

We first bring G to a form in which its matrix elements
can easily be calculated. We write G explicitly, inserting
(3.5) and (3.6) into (3.11):

G(g-) = g 1(AsLsgt O2L45) piLast pi(A1LagtO1L45) |

(3.12)

Observe that the operators N,* and Ny (i=1, 2, 3)
defined by

Ni'=3(Lass+Las), Ni*=3(Lss— Lse),

N13=%(L55+L34), N21=%(—L35+L46)) (313)
No*=3(Lis+Lss), No*=3%(Lse— Lss)
form an 0(2,1)X0(2,1) algebra with the commutation
rules
1
[N1,25,N 1,07 =4gpadV1,25, g= 1 ,
—1

(3.14)

[ZVf;Nz’] =0.
Then G can be brought to Euler angle form of 0(2,1)
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X0(2,1)
G(g—) e~ i(eaN13—a2N28) —i (B1N12+82N2?)
X g~ (11N 13— 73N 23)

(3.15)

by a simple parameter transformation. The outer fac-
tors can be taken out of the matrix elements of G as
phases, since L34 and Lgg are diagonal in the representa-
tion space. All that remains is the product

(n ] et (BIN12+82N2?) | 1)

= (ulem i)' ||, (3.16)

in which every factor is just a global representation of
0(2,1) vms*(sinh}B) given by Bargmann,1~!2 which has
been extensively used in dynamical group calculations—3
(see Appendix).

The Euler angles in (3.15) are readily evaluated. To
simplify G(¢) we move the right exponential to the left
in (3.12). Then we obtain

G(g’) = ¢—1(A2Lset O2L45) g7 (A1Last O1L4s5)

X gt (uLsstvLastwLss) , (3_17)
with
u=1+4(02/v?)(coshy—1), -
v=(coshr—1)(AG/»?), (3.18)

w=(0/v)sinhy.
Inserting the 0(2,1)X0(2,1) operators (3.13), we find

G(g-) = ¢~ (A2Lsst O2L45) gi(A1Lapt O1L45)

X ¥ [uNI=Nah—a (NP=NaD+w(Ni=N2%)  (3.19)
where the second factor can be separated into the prod-
uct of two commuting operators Gi(¢),G»(¢) in the form

G1(7) - Ga(§) = e M=o N 12w 1¥)
X g -ulaHoN—wNg] - (320)

In this work, we shall confine our attention to the
form factors of the jP=31* ground state. Then the
angles 0,0, and A;A; coincide and G(f) becomes
G(§)=Gi($)-G:().

We now cflculate the Euler angles a=a, 8=8,
y=+; for the first factor by going to the 2X2 quaternion
representation

N11=1:0'1/2, N12=’i02/2, N13=0'3/2. (321)

The quaternion for Gy is then

G1(¢) = coshi¢— (uo1—vo,— twas)sinhiy, (3.22)
which has to be compared with the Euler quaternion of
(3.23)

e~ aN13—iBN12p—iyN13 ,
10y, Bargmann, Ann. Math. 48, 568 (1947).
11 W, Albrecht et al., Phys. Rev. Letters 17, 1192 (1966); S.
Drell, in Proceedings of the Thirteenth International Conference on
High-Energy Physics, Berkeley 1966 (University of California
Press, Berkeley, California, 1967).
2 See the Appendix.
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which is
G1($) = cosla+7) coshif—sini(a—7v) sinhifo;
~+cosi(a—7) sinhif o2
—1 sing(a+7v) coshif o3. (3.24)
This yields the four equations
cosi(a+1v) coshif=coshi¢, (3.25a)
sing (@—1) sinhiB=u sinhi¢, (3.25b)
cosz(a—1) sinhjf=v sinhi{, (3.25¢)
sind(a+7) coshif= —w sinhi¢. (3.25d)

One can easily convince oneself that the same equations
hold also for as, 2, and vs. From (3.25b) and (3.25¢) we
find

sinhiB= (u2-+v2)1/2 sinhit,

coshif=[1-sinh%(}8)]'/2 (3.26)
such that
. 1 u
sing(a—v)= _——(u2+v2)”2 )
(3.27)
COSz(a_'Y> - (u2+7)2>1/2 )

i.e, 3(a—v) is a constant angle. From (3.25a) and
(3.25b) we see that for { — 0, @ — —+; hence (a—7)
is just the limit of a(—+) for { — 0. We do not give the
general solution of (3.25) since only the following special
combination of Euler angles, apart from 2(a—7),
3(a+), will be needed for the form factor of the ground
state:

cos3(3a+7v)=cosi(a—~y)+2(sin% (a+7) cost{a—7v)

+-sin(a+7) costlat7v) sind(a—y), (3.28)
which becomes, due to (3.25),
cos3(3atvy)=—""——
(u2492)112
w? 8  uw coshi{
X[—————— tanh*—+ tanh} 6 :| . (3.29)
(u?-02)3/2 2wt cosh}f

Consider the current * generated by the operator
I'#=al'y*+bT%* in the ground state. In our particular
kinematical configuration in which ¢ points in the z
direction, the electric and magnetic form factors can be
defined in terms of the components ¥° and F?! as

Fo=cosh}¢ Gy,

I=sginh}{ Gu. (3:30)

We shall use Eq. (3.10) to evaluate F° and F*. For this
the corresponding components of the current operator
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T'* have to be tilted to I'* according to (3.9). We find

C] A
P]O, = COShVL55+ SiHhV(-L 46 —L 45> N

14 14
A
I = Ly——
14
B C] A
X sinhuLsﬁ—{—(coshv—1)(—L46——L45>:|, (3.31)
L 14 v
A
INY=Ly+—
Vv
B C] A
X sinth14+ (COShv—l)(‘—L15+—L15>:| ’
L 14 14
C A
P21’= —COShVL“—SinhV(——Ll:,—‘——Lm) ,
14 14

and therefore have to calculate the currents associated
with the operators Lgs:

Fap= (1] Lay|n')(n' | G(0)[1).

To do this we write the Ls3’s from (2.1) in the more con-

(3.32)
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venient form
Lys=3%(a’e+b4-2),
Lig=3(Nit+Not+N1r+Ne),
Lis={1/20) (NNt =N =N2),
(3.33)

L= —3(ar"astasta1—b11ba—05"01) ,
Lis=3%(a1'01"— as'bo' - a101— asbs) ,
Lig=— (1/27/) (alfblf_ a2Tb2T— (llb1+d2b2) ,

where we have used the raising and lowering operators
Ni#,Ny* of the O(2,1) algebras (3.13). In terms of o,
b', etc., they can be written as

Nit=N4-iN:2=—a,'b,,
Nr=N—iNy=—ab,,
Nst=Ny'iN2=a,'bst
Ny =No'—iNs2=asbs.

(3.34)

The contribution of the term N,~ to Faus and Fag can
then be calculated in the following fashion, using the
result in the Appendix:

Fy-=% X {ar—ib1| N1 |n)(n|G(§) | ar™+ibi")

=1{{a1| N1 | ar'a2'b1){a102b1| G(8) | as¥)4- (b1 N17|5V2as 011"} (5v2a:0:2 | G (§) | 617}
=3{—e @M%y 51 2(sinhgB)on'(—sinh3s)

—V2e i Baty) ’2v211(sinh%6)v1,2‘1/21’2( —sinhig) }

— ___%{e~1‘(a—‘7)l2+26—i(3a+7)/2

sinh(38)
cosh*(38) '

(3.35)

To get Fy,- we observe that parity changes N1~ — N:~, hence one need only use G(¢) in the formula above, or,
equivalently, keep 8 the same and change a — —a, v — —7. Therefore,

From (3.33) we find then

Fig=ReFy,-=—[cosh(a—7)+2 cosh(3a+) Jsinh(36)/coshi(36)

and

Similarly, we obtain

Fss=% cosj(aty) cosh™*(38), Fig=—3 sinj(a—7) sinhif cosh™(38),

Fu,-=(Fy,")*. (3.36)
(3.37)

Fys=1iF . (3.38)
(3.39)

F15= iFle,

Fiy=—1%i sin}(a+7) cosh=3(38).

We collect all these terms according to (3.31) and (3.8), insert the results for the Euler angles (3.26)-(3.29), and

obtain for the total currents

A 0—iA
Fo= (a coshy—b— sinhu>% coshi{— |:a sinhy—&

14 14
w2

3 ,
X[z o
2 (u2+v2)ll2 (u2+v2)3/2

tanh*(38)—

A(B—1A)
———;—(coshv— 1)+ib:|

14

tanhig

Uw cosh}
2

¢
)] sinhif cosh™4(18) (3.40)
u+v? cosh} s
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and

Fl=y sinhi¢ cosh=%(36), (3.41)

with the magnetic moment being

A(B—1i4)
p=- %iul:a———;——(c

0—iA
oshy— 1) —p——— sinhy—ia:|
v v
A
-I-%iw[a— sinhy—b Coshv] , (342)

14

if the charge, i.e.,, Fo({=0), has been normalized to
unity.
Comparing (3.41) with (3.30), we obtain the first

important result .The magnetic form factor is

Gu=p/cosh*(36), (343)
which becomes with (3.26)
Gu=p/[1+ (u2++?) sinh2(3{) 2. (3.44)

Introducing the invariant momentum transfer through

i=g?=—4M?sinh%(}{), (3.45)
we find that
u2+7)2 2
Cul)=p / (1—— t> . (3.46)
4M2

Hence, the magnetic form factor has the shape of a
double pole formula with a singularity at

t=4M?/(u2 7). (3.47)

Since u?+v2=1+w?>1, the pole position corresponds
in general to an anomalous threshold. This is the es-
sential feature distinguishing this theory from other
models, ¥ which all have the singularity at the normal
place, 4M?2 It is due to this property that by proper
choice of w, the shape of the magnetic form factor can
be brought into coincidence with the function used by
experimentalists for a best fit of their data!!

Gu=np/(1—-1/0.71)". (3.48)

Looking back at the definition of w in (3.18), we see
that w=0 if and only if ®=0. Therefore, the tilting
operation with Ly as the generator is the source of the
anomalous pole position.

What are the electric form factor and the magnetic
moment in this model? Aside from the charge normaliza-
tion, we impose two physical conditions upon the
currents: (a) They must be conserved. (b) They must
be real, as follows from time-reversal invariance. These
conditions restrict the theory to having only two solu-
tions. As we shall show below, they force F¢ to be even
in ¢. But then, from (3.40), we see that v must vanish.
This is fulfilled if either @=0 or A=0. In the first case,

8 G. Cocho, C. Frondsal, Harun Ar-Rashid, and R. White, Phys.
Rev. Letters 17 275 (1966) H. Leutwyler, 'ibid. 17, 156 (1966);
W. Riihl, Nuovo Cimento 44 572 (19606).
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(3.18) gives
u=1, v=0, w=0,

and the form factors become

5 -2
Ge= 1———) ,
4M?

b4 -2
GM= ,u(l —m) ) (349)
b=—3%.
In the second case, we obtain
cosh?@¢/4M?
Gg= (1-}—% tanh?@ )
(1—cosh2@:/4M?)
X {(1-cosh2@:/0.71)72, (3.50)

Gur=u(1—cosh?@¢/4M%)~2,

ol

B=—3.

As we have stated in the introduction, we may tenta-
tively apply our results to the isoscalar properties of
the nucleons, i.e.,

3Ge=GgS, Gu=GuS, 3Ju=us. (3.51)

The first solution reproduces very well the observed

symmetry
Gu/v=Gg, (3.52)

but the magnitude of p and the shape of Gz and Gu
differ considerably from the observed curve (3.48),
since 4M2~3.5 and uS=10.44. The second solution is far
better. Choosing ® such that

cosh?@=5, (3.53)

we reproduce the correct singularity of Gu at t=0.71
and obtain explicitly

/0.71

GE~[1+ ](H/o T,

(3.54)

Gu
—=(1—1¢/0.71)"2.
m

We have plotted these functions and compared them
with the experimental data in Fig. 2, assuming

Gu?/up=Guy"/tin, Gg"= (3.55)

The agreement is excellent for GaS/u® and moderate
for GgS. The value of x5, however, is as bad as in the
first case.

We must yet show that current conservation forces
the current F({) to be even in ¢, From (3.1), we have
for the ground state

Fr(p)=(1 Ie—i'Sll"ueiMs{ec’le 1>. (3.56)
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Therefore, ¢,F*=0 becomes
( l e SI[(M — po)T0— p3T3 e Mateis | 1)=0,

where p is the momentum of the final nucleon corre-
ponding to the rapidity {. Using the vector property of
T*, we can also write this equation in the form

MFO(£)= M (1| ei$1T%iMst¢iS1| 1)
= M (1| e iS1giMsT0i81| 1)
=MF™*(=0).

Since F° must be real, it must also be even in {. Q.E.D.
IV. OTHER POSSIBLE EXTENSIONS
BY PARITY

Starting from an irreducible representation of 0(4,2)
* built upon the states

L

b b
nimay=(=aibnn(S 70

i m—i m

Xadt|n j—3m), (4.1)

we may ask how many other extensions by parity one
could construct on this space giving possibly different
theories. According to the philosophy of the dynamical
group approach, O(4,2) must contain the current opera-
tors T'®, the Lorentz generators M; and the tilting
operator .S as Lie algebra elements. Under these condi-
tions, the group extension chosen in (2.3) turns out to
be unique.

In Table I, we have listed all the possible ways that
the Lgy’s could transform under parity. We have re-
stricted L;; to be an axial vector because its physical
meaning as angular momentum is fixed. The parities of
L;s, Lis, Lis can be chosen freely while those of Lys, Las,
and L;e are then determined.

In order to construct a form factor of the structure
(3.1), we need a tilting operator .S and a T'y, both scalars
under parity and rotation. Therefore, only cases (1) and
(8) in the table are possible. Since we need, moreover,
a Lorentz generator M;, which is odd under parity,
case (8) can also be excluded. Thus, only (1) remains
and parity can be represented with doubling of the
Hilbert space by the prescription (2.3).

TasLE I. Possible reflection properties of Las under parity.

Case L; Liu Lis L Lis Lig Lss Parity operation
m 4+ - - - 4+ 4+ 4+ e-bb—o—a
@ + - - + + - -
®» + - + - - + -

4@ + - 4+ + = —- 4+ a-bb—oa
¢ + + - = - - 4+ a—igb—ib
o + + - + - + -
M + + + - + - -

+ 4+ + + + + +

a—ia, b— —ib
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(a)
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F16. 2. The theoretical isoscalar form factors GyS/uS and Gz
are compared with the experimental form factors of the proton,
assuming Gu?/u?=Gy™/u* and Gg*=0, on (a) and (b), respec-
tively. The dashed line in (b) shows the pure double-pole fit em-
ployed by Ref. 11. In (a) that fit coincides exactly with our curve.

That doubling is really needed to represent parity in
case (1) can easily be seen in the following way: If
there is no doubling, every state picks up at most a
phase under parity

mnjm)y=n(=1) @9 |njm);  (42)
f(n,7) cannot depend upon m since L; is an axial vector.
From (4.1), we see that L is necessarily a scalar. We
can also easily prove that L;, has to be an axial vector.

Suppose L;s were a vector. Then Ly, applied to |7 jm)
must change the parity. On the other hand, L;s con-
serves # and has matrix elements between equal as well
as different #’s. But this is impossible; there is no choice
of f(n,7) that can make L. a vector.

Consider now the case that L;s is an axial vector.
Then it is clear that f(n,7) can depend only on #. Two
cases can now be distinguished: (i) Li+iLy=a'Cb' is
a scalar (L and Ly have the same parity since Ls¢ has
even parity); then f(»)=0, since a'Cbd' changes # but
not the parity. (ii) Lss+7L4s is a pseudoscalar; then by
the same kind of argument f(n)=n.

Hence only the cases (8) and (5) on the table can be
verified without doubling of the representation space.
They are explicitly given by

(4.3)
(4.4)

| njm)=n|njm),
| njm)=n(—1)"|njm},
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and can be defined operationally by

a—ia, b— —ib, [0)—1i|0), 4.5)
a—ia, b—ib, [0)—i|0), (4.6)
respectively.

All other cases need doubling which can be achieved
by using the direct product of L, with ¢, or o3, accord-
ing to whether they are scalars or pseudoscalars. The
cases (1) and (4) also permit an operational definition of
parity by

a—b, b— —a,

10)— [0},
10)— 4]0},

4.7)

a—b, b—oa, (4.8)

respectively.

If we allow a Ty from outside the Lie algebra, we
need only one scalar as a tilting operator S, and the
theory is much richer. O(4,2) is then, however, no longer
the dynamical group of the system. Such a model is dis-
cussed in Ref. 2.

V. CONCLUSION

We have discussed the most general theory of elec-
tromagnetic currents on the simplest fermion represen-
tation space of the dynamical group O(4,2) using a cur-
rent operator which is completely algebraic. Internal
quantum numbers like isospin and hypercharge have
been neglected in this approach. The results have tenta-
tively been interpreted as applying to the isoscalar prop-
erties of the nucleons. The shape of the magnetic form
factor is predicted to follow exactly the double-pole
formula that has been used by the experimentalists for
an empirical best fit of their data. The theoretical value
of the magnetic moment, however, does not coincide
with the experimental isoscalar magnetic moment. This
defect will probably be corrected by including more gen-
eral expressions in the current operator, such as con-
vective currents.!

1 Note added in proof. With such terms the complete electro-
magnetic form factors of proton and neutron can indeed be fitted
in excellent agreement with experiment [A. O. Barut, D. Corrigan,
and H. Kleinert (to be published)].
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It will be interesting to see how a nontrivial inclusion
of internal symmetries like SU(2) or SU(3) will modify
our results for the isoscalar form factors.
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APPENDIX

We recall briefly the global representations of the dis-
crete series Dyt of O(2,1). Dt is characterized by the
spectrum of the (third) diagonal operator, which goes
asm=k, k+1, k42, ---. Let

af
a=(B-), Ia|=1
&

be the 2X2 representation of 0(2,1), then the corre-
sponding D;* matrix element is given by the » function
vmnk(a) — @mn&—m—nﬁm—n

XF{k—n, 1—n—k, 1+m—n, —B8B),

(A1)

(A2)

with, for m>n,

®mn

1 [k lmtr—1)2
- A
(m—mL (”—k)l(n-l—k—l)!] (43)

For m<n, we use v and 8 — —@. In the text, we have
used v,,,* with the argument sinhi1g8 which indicates the
0(2,1) transformation

coshif sinh
a:( : ﬁ) . (A4)
sinh38 cosh}
The matrix element of e=#¥1*| for example, is
{m| e BV p)=1y,,*(sinhiB), (A5)

where m,n are the eigenvalues of V32 on the correspond-
ing states and % is the lowest value they could take,



