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We calculate the exact stiffness constants x, %, ¢, of mean, Gaussian, and spontaneous curvature for a double layer of surface
charges separated by a fixed distance 24 in an electrolyte with finite screening length /,. This extends earlier studies of the limits

of very small and very large d//p.

1. Fluctuating surfaces appear in many physical
systems, ranging from magnets (domain walls), over
alloys (phase separation boundaries), microemul-
sions (soap interfaces between oil and water), ele-
mentary particles (world sheets swept out by the
string between quarks), to biophysics (cell walls).
Most properties of such surfaces are dominated by
surface tension. Specially interesting effects arise,
however, when the tension happens to be very small.
Then fluctuations are very large and the relevant ma-
terial property to control them is the bending stiff-
ness. In the limit of small bending it can be para-
metrized by the local energy density [1]

e(&)=4x(c,+c;—co)*+3xX2¢ 5, (1)

with a total energy
E= [ @ [e@ e(@), 2)

where ¢; are the principal curvatures, the inverse of
the principal radii 1/R; and ¢, is the most favored
curvature. We have parametrized the surface by
&= (&', &) and denoted the induced metric by g;(&)
and its determinant by g(&). The ansatz (1) rep-
resents a purely phenomenological collection of many
microscopic effects. First, there is in-plane elasticity.
If the membrane were to consist of isotropic contin-
ous material with a thickness d, the opposite distor-
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tions of the surface regions generate a stiffness [2].
In the symmetric case, if E, u denote the elastic and
the shear modulus, respectively, v=1F/u—1 is the
Poisson ratio, the constants x, ¥ are given by

Ed?

J{=m, H=—x(1-»). (3)

Certainly, for molecular layers the isotropy assump-
tion is not applicable and the detailed relations be-
tween elasticity and stiffness constants will be mod-
ified. In the extreme anisotropic case of a lipid bilayer
in which there is liquid behaviour in the horizontal
direction and an incompressibility in the vertical di-
rection, one finds [3]

K, K,

2
x=d g

(4)
where K, K, are the horizontal compressibilities.
Notice that the power of d3 in (3) is lowered to d?,
1.e. such a material is usually stiffer than an isotropic
one. In addition the material is not homogeneous at
the microscopic scale, the elastic forces being them-
selves a manifestation of even more fundamental
molecular forces which could in principle be used to
calculate x but at the scale of many atoms at which
we shall work here this will not concern us.

2. An important source of stiffness are the electric
fields surrounding a membrane. For neutral mem-
branes, the dispersive forces cause a stiffening which
has recently been calculated [4].
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In general, since electrostatic forces are of long
range, this stiffness will not be parametrizable in the
form (1), (2). A non-local interaction will result,
with the generic form [4]

E= [azag /e(®) (@)

X [3x(& &) (1 +ea—co) (&) (er+ey—co) (&)
+x(& &) e (&) (E)] . (5)

If, however, a membrane moves in a saline aqueous
environment the electromagnetic forces are screened
down to a finite length range, the Debye length

1/2
lp=m=1= (M) , (6)

n0€2

where T'=temperature, kz=Boltzmann’s constant,
no=density of charge carriers in the environment,
t+e the charge carried by them (e?=4na where
a=fine structure constant), and ¢ the dielectric con-
stant of the water. In this case it is possible to par-
ametrize the curvature stiffness by a quasi local term
of the form (1), (2) for curvature radii much larger
than the Debye length.

In a recent note we have developed a simple the-
oretical framework for calculating the stiffness con-
stants x, ¥ due to various field effects [5]. The par-
ticular case of a screened electrostatic field was also
given. If membranes carry a surface charge, the stiff-
ness of the field lines emanating from the surface will
generate a stiffness of the surface [5]. For an infi-
nitely thin membrane of surface charge density o we
found

xX=1g08m,

agm, (7)

=

H=—

with o measured in natural units 6,=em?. The pur-
pose of this note is to extend the calculation to mem-
branes of finite thickness by considering two sur-
faces carrying different charge density o, o_ at an
arbitrary distance 2d. We extend the previous theory
and include also the case of a purely dispersive in-
terior of the membrane with dielectric constant &,
and my =0, M=co. Then there are two relevant di-
mensionless system parameters md and (ew /ey ) md.
The relative dielectric constant to be denoted by
&=¢w/ém, 1S In general quite large, usually around
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40. Hence, we can easily be in a regime where md is
small but ¢md is large. An example is a flickering
biological cell in an environment of low salinity. The
purpose of this note is to present exact expressions
for the curvature elastic constants x, ¥, ¢, valid for
all md and ¢.md.

While this work was in process we received a pa-
per by Winterhalter and Helfrich [6] who studied
the same system but were able to give a solution only
in the limit in which both md and ¢,md are very large.
Thus they do not cover the important regime of a
large screening length (i.e. low salinity). Their paper
should be consulted, however, for an evaluation of
earlier work on this subject [7].

3. Asinref. [4], the calculation will be done in the
Debye-Hiickel approximation in which the electro-
static field in the neighborhood of the surface sat-
isfies the linearized Poisson-Boltzmann equation

(A —m?)p(x)
—0 [ @2 /2@ 6D (x-2(&) . (8)

where o is the charge density; we consider two sur-
faces of charge densities o, o_ positioned at the ra-
dii R—d and R+d, respectively, and calculate the
electrostatic energy once in a cylindrical and once in
spherical configuration. Thereby we assume that the
distance 2d does not change upon bending. This is
certainly true if the compressional stiffness is much
larger than the horizontal one. We then pick out the
leading 1/R, 1/R? coefficients in the energy density
e, €, to be denoted e{!’, e{?’, and identify

x=2el?, x=el? —4el?
Co=—el /el . (9)

Let r be the radial coordinate in either configuration.
We shall denote the small-r solution by I(r), the large-
r solution by K(r), and the interior solution by /(7).
Then the boundary condition at r, =R+ d reads

DI(r_)=C+Bf(r_), (10)
Bf(ry)+C=AK(r. ), (11)
emBO, f(ry) —ewdd,K(ry) =0, , (12)
ewDa I(r_)—emBo, f(r_)=0o_. (13)

If 9, is abbreviated by a prime and I(r_), K(r,),
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f(r+) by I, K, f+, respectively, the solutions are

A= (emBf s =04 ) /ew K,
D=(eyBf’_+0,)/ewl’,
B=(4AK-DI)/(f+ —f-)
_ o, K/K +a_1/I
em( W K/K' —f_I/T")—ew(fs —/2)

We now introduce the dimensionless functions

Q=-mK(ry)/K (ry), Q_=mI(r_)/I'(r),
g+=f"(r+)/f(r) and obtain the fields on the *
surfaces,

(14)

¢(x+)= (4K, DI)

X Qi (011%G+Q+_0-Q—)’ (15)
with A=¢md and

1 Afy —f-
=2<g+Q++ Q- +d IE )_1_’1' (16)

The electrostatic energy density is then given by

e=3lo.0(ry)+o_o(r_)]
l (02 O+ +0% Q-

~2mew \ T g. g

1(0.Q4—0_ Q_)Z)
2 1+i+a :

(17)

We now insert for specific solutions for cylindrical
and spherical configurations =1I,(mr),

=Ky(mr), f<e(r)=logr and IS=sh(mr)/r,
Ks=e="/r, f5=1/r, respectively. The associated
functions

05 = (Ko(mR+) Io(mR_)>
* 7 \K;(mR,) I,(mR_)

0 _( mR, mR _ )
* T~ \mR, +1 mR_cth(mR_)—1)’

ge=(1%d/R)~", g% =(1%d/R)™? (18)

are easily expanded in powers of 1/R up to 1/R?,

e 1 d 3
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m
j§=1$%+d—22, f&=1¢f+%’
c 8(”3’R)2 d_ %H%Z,
= Gyt * T+ A "

Collecting all 1/R and 1/R? contributions and form-
ing the combinations (9) we arrive at the following
stiffness parameters,

2
="’"[1 432 (1+52 '1)

l6ew [ 1+4 1+2 1+2
1652 \ X ]
+—— (15 1)° [Ad+ (3A—1)d?]
_ a‘m 5 , A? )
i 8w[(1+2d 2d )(1+(5 1+1)°
_ 40 62%d*A :I
3 (1+4)2
co=8md(1+2)
A=2d(1+4)
1+4)+3(1+52)/12 1662 [Ad+ (1A-1)d?]’°

(20)

where d is measured in units of 1/m (and A=¢md,

=4(1=%0) is used). This is an exact result valid
for all md, e.md. In the limit d—0 it reduces to our
previous result (7). In the limit of both md and
A=¢.md large, it gives the same result as Winterhal-
ter and Helfrich’s except that they have ignored the
pure d? term in X, which is quite important for d> 1/
m, i.e. for high salinity.

The entire regime is displayed in fig. 1 for some
typical dielectric constants g.=&w/eq=1, 10, 40. The
dashed curves indicate the previous two limits. For
x, X we have plotted once the charge symmetric case
0=0 (denoted by x,, %,), and once the extreme asym-
metric case 0= *1 (x,, %,). Instead of the sponta-
neous curvature ¢, we have plotted c¢,/9 for the pres-
ent two cases. The arbitrary case J is obtained by
forming the combination x=x,+d%(x,—x) (the
same for %), while ¢, can be deduced from
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Fig. 1. The dependence of the curvature elastic constants x, %, ¢,=c,/d on the reduced thickness measured in terms of the screening
length, md, for a ratio of dielectric constants & =éew/ey=40 (#xx), 10 (+ + +), 1 (+++). For x, ¥ we plot the curves with which charge
symmetry é=4(0,—0_)/(0,+0a_)=0 (x,),and for6=1 (x,). For arbitrary d one has to compose x,+ 62 (x,— ;) to obtain x (the same
for x) or 1/¢o+ 62(1/cou—1/cy) to obtain 6/c,. We have indicated the previous limiting results by Winterhalter and Helfrich (WH)
[6], &—c0 and Kleinert (K) [5], d—0. Note that the (WH) curve for %, is no good approximation anywhere.
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