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We give the exact analytic expression for the semiclassical rate of phase slips
in a thin superconducting wire, thereby correcting earlier published resullts.

One of the most beautiful applications of Langer’s' path-integral
approach to tunneling processes concerns the rate of phase slips in a thin
superconductive wire. An extensive discussion was given many years ago
by Langer, Ambegaokar,2 McCumber and Halperin® (LAMH). The resulting
electrical resistance explains the experimental data® extremely well over a
wide range of parameters and deviates only veiy nzar the transition tem-
perature (see Fig.1). The only unesthetical feature of the original resuit
was that a fluctuation determinant had to be evaluated numerically. This
was overcome some years ago by Duru, Kleinert, and Unal (DKU)* who
were able to simplify the path integration and obtained an analytic result.
They separated the local complex order parameter along the wire coordinate
z, the order field A(z), into radial and azimuthal part, p(z) e”"”, and
integrated out y(z) exactly; the remaining ‘‘radial” path integral over p(z)
allowed for a simple semiclassical treatment.

The purpose of this note is to point out that a factor was overlooked
in the DKU treatment. Taking this into account, the approximate interpola-
tion formula given by MH can now be compared with the analytic expression
and the agreement turns out to be excellent. Since the subject is meanwhile
textbook material® we think it is worthwhile to record the exact analytic
result.

Our starting point is the partition function of a thin wire expressed as
the path integral over the order field in the presence of an external source j

L/2
g[j]=jp@p@veXp{—%_[ dZ[(pz)z—pzwL%p4+p2(72)"*-2jvz]} (1)

~L/2
" where o is the wire’s cross section, L its length measured in units of the
coherence length, and T the temperature measured in units of 2f./ kg (/.
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Fig. 1. Resistance of a thin superconducting wire near the transition temperature,
experimental data in comparison with LAMH theory. Dashed line is resistance due
to phase slips only; for the solid line, a normal background resistance has also been
taken into account. The figure is taken from Ref. 4.

being the BCS condensation energy and kg the Boltzmann constant). The
source 2jy, enforces a stationary average current {p*(3,y))=j=«(1—«?%)
carried by the wire. We follow DKU and integrate out the angular variable
¥, reducing the path integral (1) to a one-dimensional problem Z[j]=
| Dp exp{—(o/T) | dz[(p,)*— p°+p*/2—j*/ p*]}. Although it has recently
been understood that this reduced path integral cannot be defined via
Feynman’s time slicing procedure,’ there is no problem at the semiclassical
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level where fluctuations take place near the metastable minimum p,=
(1—«?)"/2. The parameter « is the field momentum of the order field, which

at the metastable minimum reads
AO = po eiKz (2)

The nontrivial extremal fluctuations are [with w’=2(1-3«?)]

A, = [1 2 /2 :llf?- ex [( +arctan[ d tanh(wz)])]
=|1-xk2— il kz — —
b K cosh’(wz/2) P\ ¥ 2k 2

= py(z)e™ (3)

The subscript b stands for “critical bubble” in the sense of Langer.’
To fulfill periodic boundary conditions, we have for the minimum (2)
the quantization

2
k=""n, (4)
and for the critical bubble (3)
2 w 2
Kp +-i arctan(if) = an (5)

where the integer n,, is the number of windings.
In the semiclassical evaluation of the reduced path integral, one has

to compute the infinite ratio of eigenvalues

A%
- 6
ln_[ (Ag) n,. fixed ( )
where the A%" are eigenvalues of the differential operators
d> 14d* [ 1
g =L 2@ | _ 2,1 4202 7
b= T A TP 2P /p . (7)

Due to (4) and (5), the eigenvalues A" and A% contain, at fixed n,,, different
values of «. To simplify the calculation one may rewrite (6) as

A‘;(x)) _ (Aﬂ(x)) (A?,(Kb))
E(Aﬁ(xb) v wees TR0 Ge) | mees X2 Gy ®

The second product on the right-hand side was evaluated analytically by
DKU.’ The first product was overlooked. Evaluating this we find

An(x) B 12« @
Q(Az(xb)) ﬁxed’e’“’[ p a“"a“(zx)] 2
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With this additional factor the rate of (current reducing) phase slips from
the state (2) reads (compare with Ref. 5, Eq. (59))

1 L
Rate = 2%/4 Q) ~Fye/T 10
R W e VT (k) e (10)

where
Q(x) (=357 ex { 3V2x ctan[(l_gmz)l/z]}
K)=E—517% - ——ar A Sl
(1—x2)"? p (1-3x2)"° J2K
x|(1+x2) —[(1+ %) +3(1 -3x%)*]"? (11)
Here 7 is a time scale discussed in Ref. 3 and F, = 4w /3 —4j arctan(w/2«)
is the energy of the critical bubble. For the x-dependent part MH gave an

approximate interpolating formula of their numerical evaluation (see Ref. 3,
Eq. (4.36))

Oumu(c) =(1-vV3 k)"**(1-«*/4) (12)

Comparing the two expressions we find that MH’s interpolating formula
agrees with our analytic expression in (10) to within a few percent, the
deviations being largest for k » k. =1/ V3 (see Fig. 2). Indeed, the first three
Taylor coefficients are very close to each other:

3v2 9 1 9 27
Q(K)=1——£7TK+(— wz——s)xz—\/ﬁ(" 7T3—_7T)K3+' "

2 4 4 8 8
—1-6.664Kk +18.46Kx>—34.34K>+- - - (13)
15 503 1275
Q =1-V3—k+—«’— ?
MH(K) \/§ 4 K 1 K \/3 128 K
=1-6.495xk +15.72k>—17.25>+ + - (14)
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