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Abstract

Exploiting the recently found extra monopole gauge symmetry
which ensures the physical irrelevance of the Dirac strings in elec-
tromagnetism with Dirac magnetic monopoles, we formulate a local

quantum field theory of charges and monopoles.
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1) In a recent note [1] we have pointed out the existence of an extra gauge
symmetry in the action describing the electromagnetic forces between a par-

ticle of charge e on a worldline L' with a 4-current
J* = ebu(z; L), (1)
and a Dirac magnetic monopole [2] of charge ¢g on a worldline L with a current
7" = g0u(x; L). (2)
The action reads
A=A+ A, = /d43: [m%(Fu,, — F5)? +iAujul (3)

where F,, = 0,A, — 0,A, is the usual field strength while Ff:j is what we
have called the monopole gauge field, describing the monopole via the dual

~ 1
5;;1/(37; S) = Eeull)\n5)\n(w; S), (4)

of the d-function on the worldsheet S of the Dirac string

. — dz, (o) dz, (1) (4) _
bu2:S) = | dodr[ WO — (o) i@ =20, )
in the following way:
Fl = 4790, (x; S). (6)

The physically observable field strength is Foo* = F),, — F)[, and the finiteness
of the action A; containing the monopole gauge field enforces the presence
of a d-function in F), on the world surface precisely equal to F lfj so that
Fﬁfjs This is why the action A; is regular and does not contain a square of
a 0-function as the expression (3) might initially suggest.

The worldline of the monopole is, of course, the boundary line of the string’s

worldsheet S, as expressed by Stokes’ theorem:

1 -
§6p,u)\nau5)\n($; S) = 5” (.T, L) (7)



This implies that the monopole gauge field satisfies the equation

1 -
EGW,\K@,,F/{; = 47j,. (8)

2) As noted in [1], the action (3) is invariant under the monopole gauge

transformations
FL —FL +0,A] —0,A], A,— A, + A7, (9)
with integrable vector functions A} (x), which have the general form
Ay =4mg > 6u(z; V), (10)
%

with the sum running over arbitrary choices of 3-volumes V" and 6,(V') being
the -function on these volumes:
dz, dz, dz;

) (¢ _ 7
do_ dT d/\5 (x x(O’,T,)\)), (1]‘)
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The monopole gauge transformations (9) express the freedom of distorting
the Dirac strings without changing the boundary lines, as can be seen from

the transformation
SM(QS; S1) — SAn(x; Sy) = Sm(x; S1) + 0,0, (z; V) — 0,0, (z; V), (12)

if V is the volume enclosed by the two surfaces S; and S, with a com-
mon boundary line L. For some monopole gauge transformations the
string distortions are trivial, namely those of the form A} = 9,A” with
4A" = g ¥y, 6(z; Vy), where §(z;V,) is the d-function on the four-volume
Vi,

dz, d, Ty dZs o)

d(z; Va) Eeum(s/dpdade)\ 0 do dr

(x —z(p,o,7, 7). (13)



These do not give any change in FIEJ since they are a submanifold of the
original gauge transformations 4, —+ A, + d,A. We may remove them from

P . o« .
A, by a gauge-fixing condition such as
nuA, =0, (14)

where n,, is an arbitrary fixed unit vector.
The remaining monopole gauge freedom can be used to bring all Dirac strings
to a standard shape so that F)|, () becomes a function of only the boundary
lines L. In fact, with the above n, we may always reach the azial monopole
gauge defined by

nF, =0. (15)

To see this we take n, along the 4-axis and consider the gauge fixing equations
Fu+0,AF —o,AY = 0, i=1,2,3. (16)

With (14) we have AY = 0 and A? could certainly all be determined if
they were arbitrary real functions. But the same thing is possible for the
restricted class of gauge functions at hand, with the form (10). This is seen
most easily by approximating the 4-space by a fine-grained hypercubic lattice
of spacing € and imagining Fﬁ to be functions defined on the plaquettes. The
d-functions correspond to integer-valued functions on sites [§(z; Vi)=N(z)],
on links [0, (z; V)=N, /€], or plaquettes [§(z; S)=N,, /€], and the derivatives
0, to 1/e times lattice differences V, across links. Thus F ﬁ can be written
as 4mgN,,(z)/e* with integer N,,(z). The gauge fixing in (16) with the
restricted gauge functions amounts then to solving a set of integer-valued

equations of the type

Ny +VyNF —V;N, = 0, i=1,2,3. (17)



with Ny = 0. This is always possible as ha sbeen shown with similar equations

in Ref. [4]. With the gauge being fixed we can solve Eq. (8) uniquely by
Flf,(x) = —87€annr(n0) "' k- (18)

3) If we want to turn the classical theory associated with (3) into a quan-
tum field theory, we have to take the amplitude ¢*/" and form the path
integral over all fluctuating grand-canonical ensembles of world lines L' and
worldsheets S. For the world lines it is well known that such a path integral
can be replaced by a functional integral over a single fluctuating field [3]. In
the absence of monopoles this gives rise, for charged electrons, to the stan-
dard quantum field theory of electromagnetism (QQED) in which the electric
interaction

Aa=i [ d'sA,, (19)

is replaced by the second quantized field action

A, = [ d'z {fo(@) [7(i0, = eA)e(@) - mb()el@)] }, (20

where m, is the mass of the electron and . (z) are the standard Dirac fields
of the electron.

4) For the monopoles, the situation is initially much more involved since
the path integral is a sum over a grand-canonical ensemble of surfaces S.
Up to date, there exists no satisfactory second-quantized field theory which
could replace such a sum. The vacuum fluctuations of some non-abelian
gauge theory will eventually do the job. Fortunately, however, due to the
monopole gauge invariance of the action (3) under (9), most configurations
of the surfaces S are physically irrelevant. If we fix the gauge as described
above, the monopole gauge field is uniquely given by Eq. (18) and thus
depend only on the orbital worldlines L of the monopoles via (2). But then



we can rewrite the action with the fixed monopole gauge as

A:A,1+Ael+./4,\1+./4)\2 (21)
1 S . _
= /d4:r { [16—7T(F’“’ — f£)2 + 1AL ] i (ngao.ff; + 87reu,,,\,€n,\],€)} )

where f1, A, are now two arbitrary fluctuating fields (i.e., f., is no longer
of the restricted form implied by (6)]. The latter field plays the role of
a Lagrange multiplyer to enforce the specific gauge relation (18). The two
action terms in which it apears have been denoted by A, and Ay,. We have
omitted a gauge fixing term for the ordinary electromagnetic gauge since it

is standard. The monopole enters now via the magnetic current coupling
-Amg = -A/\Q = i/d4$zi,¢j,¢, (22)

where flu is short for
A, = 8T A v € rs - (23)

The ensemble of monopole orbits L can now be turned into a a single fluc-
tuating field as usual. If monopoles are spin 1/2 particles, this obviously

replaces [just as in going from (19) to (20)] the magnetic interaction (22) by

Ay = [ d'z {Uy(@)7"(i0, — 94,0, () — ey @)y (@)},  (29)

where 1),(z) is the Dirac field of the monopole. The total gauge-fixed field
action is therefore

A=A+ A + Ay + Ay (25)

Before gauge fixing, the total path integral for the fluctuating theory
involves the fields 1,1, and the gauge fields A, and Fﬁ. While the path
integrals over the first three fields are defined in the standard way as being the
product, over all sites = of the above specified hypercubic lattice, of integrals

over Grassmann variables t.(z),1,(z) and c-number variables A, (z), the
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latter is of a new type: It is defined as the product, over all plaquettes of the
lattice, of discrete sums over all integers Ny, (x) with F}, = 4mgN,, /€.

After the gauge fixing, the path integrand will in general contain Fadeev-
Popov determinants. For the original gauge transformation A, — A, 4+ J,A,
any standard gauge fixing, for instance the axial one d(n,A,), gives only
a trivial constant Fadeev-Popov determinant which can be ignored. The
same thing happens with the monopole gauge fixing. At the level of the
hypercubic lattice, Kronecker ¢’s in the path integrand ensure conditions
like (16) which corespond to [I?_; d,, 0- Also such conditions produce only
trivial constant Fadeev-Popov determinants [4], so that there is no need to
introduce compensating fermionic ghost fields.

The fluctuations in the gauge-fixed action (25) involves only path integrals
over ordinary Grassmann fields v, ¢y, and c-number fields A, 5/, Auv- This
completes the construction of the quantum field theory of electric charges
and Dirac monopoles [5].

Notice that the dependence of this theory on the monopole gauge degree
of freedom is much more dramatic than in pure QED. There, it was only
a polarization degree of freedom which was made irrelevant by the electro-
magnetic gauge transformation A, — A, + 9,A. Here the monopole gauge
transformations (9) reduce the dimensionality of the fluctuations from sur-
faces S to lines L.

5) Let us end by remarking that by integrating out the A, field in the
classical action (3) we obtain the interaction

At = / d'z {16% [(Fh)? + 20,5, (-0%) 0, FY))]
47

L1 y
(=) + 5000} (26)

The third term is the usual electric current-current interaction. The first two



terms are seen, via (8), to reduce to the magnetic current-current interaction
47
2
The last term is the current-current interaction between magnetic and electric

A = d*z7,(—0%) "7, (27)

currents. In the axial gauge with (18) it becomes
Aj; = 47reu,,>\,€/d4xju(n862)’1n,,8>\jn. (28)

These are the correct current-current interactions which can be found in the
textbooks [6].
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