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The spectral representations of the fixed-energy amplitude of the symmetric and the general
Poschi-Teller potentials are summed via a Sommerfeld-Watson transformation which

leads to a simple closed-form expression. The result is used to write down a similar expression
for the symmetric and general Rosen—Morse potentials, exploiting the close
correspondence that exists between the two systems within the Schrodinger theory and the
path integral formalism via a Duru-Kleinert transformation. From the singularities

of the latter amplitude the bound and continuum states of the general Rosen—Morse potential

are extracted.

I. INTRODUCTION

In recent years, the introduction of new techniques in
path integral theory has led to a renewed interest in the
quantum mechanics of potentials of the Poschl-Teller

type,'
A/sin? 6 + B/cos? 6,

considered between singularities in 8 and for 4, B>0,
and of the closely related Rosen—Morse type:?

A'/cosh®(x/d) — B' tanh(x/d), x€] — o0, [.

The path integral of the Poschl-Teller potential can be
solved if one observes that, at least for certain values of 4
and B, it is formally equivalent to the azimuthal projec-
tion of the path integral of a particle moving near the
surface of a sphere embedded in a higher-dimensional
space.3 For the symmetric Poschl-Teller potential (where
B’ =0) a three-dimensional embedding space must be
used, while the full Péschl-Teller path integral requires a
four-dimensional embedding. The projection procedure
circumvents the usual difficulties encountered when one
tries to define a path integral with a singular potential
energy.* The usual naive time slicing, inspired by Feyn-
man’s original path integral definition would lead, in
these cases, to highly divergent integrals. However, a time
slicing of the complete three- or four-dimensional Carte-
sian path integral in the Feynman manner and a subse-
quent transformation of the slices to polar coordinates
allows to regularize the azimuthal path integral. In the
time-sliced expression the singular potential is approxi-
mated by Bessel functions and the slice integrals over
these are well defined. Such a calculation yields, of
course, nothing more than the azimuthal Green functions
of free particles moving in three or four dimensions,
whose spectral representations are well known. In three
dimensions, the Green’s function is built from the Leg-
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endre polynomials P}" (cos 8) and in four dimensions
from the representation functions di,,l’,nz(ﬁ) of the rota-
tion group.

Apart from being an interesting object of study in
path integration serving as a testing ground for new eval-
vation methods, the Poschl-Teller potential also arises in
certain recent applications, e.g., in membrane physics,
where the symmetric form with B = 0 governs the ther-
modynamic field fluctuations in the functional saddle
point approximation.>

In Schrodinger theory, the Poschl-Teller system can
quite easily be transformed into the Rosen-Morse system.
In the path integral formalism, the correspondence can be
established after a path-dependent time reparametriza-
tion, the Duru—Kleinert transformation which relates the
fixed-energy amplitudes’ of the two systems. Their rela-
tion has already been written down and explored before.
That earlier work, however, performs several incorrect
manipulations so that its final Rosen—-Morse amplitude
misses out on the continuous states which will be prop-
erly obtained here. Another calculation of the Rosen-
Morse path integral has been presented in Ref. 9. How-
ever, this path-integral analysis seems to us incomplete
just as the algebraic one given in Ref. 10. Both articles
relate the Rosen—Morse potential to the modified Péschl-
Teller potential, :

a/cosh?(x/d) — B/sinh*(x/d),

and try to exploit the inherent SU(1,1) symmetry of the
latter. But neither distinguishes between the eigenvalues
below and those above the upper bound B’ of the poten-
tial. Consequently, both fail to take into account the two-
fold degeneracy that exists for states with energies larger
than B'.

The purpose of this paper is to calculate the fixed-
energy amplitude of the symmetric and of the general
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Poschl-Teller potentials in closed form, i.e., in a form
that involves no summation. It is then fairly simple to
write down the fixed-energy amplitude of the Rosen—
Morse potential in closed form and to deduce from it all
the eigenstates. We shall derive our results in a system of
units where the constant d in the Rosen—Morse potential
is equal to unity. The parameters 4, B, A’, B’ will be
considered as dimensionless energy values. Physical ener-
gies are obtained by multiplying these numbers with
#/2md*.

Il. SUMMING THE POSCHL-TELLER FIXED-ENERGY
AMPLITUDE

A. Symmetric Poschi-Teller potential

The fixed-energy amplitude of the Péschl-Teller po-
tential 4/sin’ 8, 6€]0,7[ that is symmetric with respect to
the point 7/2 satisfies the following differential equation:

# (d 4
[ M (d62+ 0) ](9|9a)A,E

= — ifi5(60 — 6,), (1)
with boundary conditions

(0=0|6,) 4 5= (6=70,) 4 g=0.

This may be compared to the projection of the fixed-
energy amplitude

(cos 8 |cos 8,),, &

for a free particle in three dimensions into a fixed azi-
muthal angular momentum m. It is a solution of the
equation

# 1 d | Gd m? 7
ﬁ(_sineﬁs‘“ %“Lsinze)_ ]

X (cos 6 |cos 0,) , g=( — i#i/sin 6)8(6 —0,). (2)
If we renormalize the latter amplitude introducing

(816,) ,g=(cos 6 |cos 8,),, g(sin Osin 0,), (3)

we can bring the derivative term of the Schrédinger equa-
tion to the usual free-particle form d%/d6? and obtain

# & mr—1/4 i 1
[W(_W“L sin 0 )_( +Z)]

which is Eq. (1), if we identify the parameters

A=m?—L m integer, E=E + .. (5)

Due to this relation with the free-particle amplitude, the
amplitude for the Poschl-Teller potential has the obvious
spectral representation in terms of associated Legendre
polynomials PJ":

(6510,) e

- ifi

= sin 6,5in 6, 2 57y /73

l—m
X(l+ )EH— ;P"‘(coseb)P'”(cosG) (6)

So far, this spectral representation has been derived only
for integer-valued m and I

It is the first expression that we want to sum up
explicitly. The standard tool to do this is to find an ap-
propriate analytic continuation in the summation variable
! and to perform a Sommerfeld-Watson transformation
on the sum. As we shall see this leads to obtain the fol-
lowing closed-form expression valid for cos 6, > cos

(ebl ea)m,E

= ysin 6, sin 6, —

iM T
# sin 7m(lg—m)

F(1E+m+1)

m (COS 0 )Pl

"(—cos 6,),

(7

where

Ip= — 1+ i+ QM/#)E, m=,/A+}, m integer.

(®)

It is easy to remove the restriction of m to integer values
by using the general associated Legendre functions,
which are defined in terms of hypergeometric functions in
the following manner:

1—}—2)“/2 1

P"(z’“( T

1—z

1—z
F(—/T,/l-l—l;l—,u;T). 9)

The definition is valid for all complex values of u and A.
For integer 1 = m, A = there exists a limiting formula
that leads back the familiar “polynomials” P} (cos 0)
(see Ref. 11, formula 15.1.2). Using the well-known for-
mula

w/sin TA=T(A)T(1 — A1),

we can rewrite the right-hand side of Eq. (7) as
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ysin 6, sin 6,( — iM/A)T (m — [g) T (lg+m 4+ 1)
XP,;”’ (cos Ga)P,;"’( —cos 6;), (10)

or in a more precise notation, which allows for the con-
ditioncos 6, > cos O;:

ysin 6, sin 0,( — iM/B)T(m — )T (lg+m+ 1)

X{O (8, — 0,) P ™ (cos 6,)P_ ™ ( — cos 6)

+ 00, — Gb)P,;'" (cos Gb)P,; "(—cos@,)}. (11)

Here ®(x) denotes the Heaviside function, which is zero
for x<0 and one for x> 0.

Using Eq. (9) one easily convinces oneself that the
amplitude (11) solves the differential equation (4) for
arbitrary complex values of m. The associated boundary
conditions are satisfied if the square root in (8) is chosen
positive. This can be seen by inspecting Eq. (9), which
shows that

P7#(1)=0, if Reu>0.

Having made this choice we can abandon the restriction
to integer m.

Let us now derive Eq. (7) by summing the spectral
representation (6). First we rewrite the sum as a contour
integral in an appropriate manner. An obvious possibility
would be to represent (6) as

1 " T ih
sin mA E — #A(A + 1)/2M

2mi <€

4 1 F(A—m+1)Pm pr
X(243) Tt AR, 02

where the integration contour ¥ encloses counterclock-
wise the real axis for x > m — e. However, the pole struc-
ture of the integrand becomes much more transparent if
we use the formula (in Ref. 11 formula 8.2.5)

ﬁi_“(z) _

FrA—p+1)/~
T (A0

2 -
—;e"“"sin(,uﬂ')Qﬁ{(z)) , (13)

which holds for Imz>0 and expresses the Legendre
function with negative index p, P; ¥, as a linear combi-
nation of P and the Legendre function of the second kind
Q%. The over tildes are there to distinguish our Legendre
functions P, @4 from those in Ref. 11, the difference
being that the latter have a branch cut on the interval

[ — 1;1] and therefore are discontinuous along it, whereas
we prefer the Legendre functions to be well-defined real
functions on this interval. The relation between the two is
given by either of the two limits

Pi(x)=lim e™/ 2P (x + ie) (14)
€-0
or
Pi(x)=lim e~ ™/2P(x — ie). (15)
-0

Keeping this in mind we can now write down (13) for
integer uy=m, A=1.

Pr"(x)=(—=D"[—=m)V/(+m)]P]"(x). (16)

When inserted into the sum (6), this relation gives rise to
another analytic continuation in / that can be rewritten a
la Sommerfeld—-Watson,

1 1 T if
sin m(A —m) E— #AA+ 1)/2M

2771 74

P/l_m( _zb)P/l_m(Za),
(17)

2 NTA+m+1)
X( E)r(/t—m+1)

or, more conveniently, as

—1 7 2iM A+3

2 Jg Tsing(A—m) A Al A+t D
rA+m+1) o
Xp(,l_m_*_l)P/t (—2zp) Py "(2,). (18)

The pole function 7/sin w(A — m) has residues with al-
ternating signs. This can be compensated for by using the
negative-argument formula

PH(—z)=e~ ¥ P(z) — (2/7) sin(A + u) 0% (2), (19)

which is valid for Im z > 0 and which, for integer A,u with
A >0, reduces to

PI(—x)=(—1'=mPI(x). (20)

The poles of 7/sin 7wl at | = — m,....,m — 1 are canceled
by the zeros of I'(/ +m + 1)/T'(I — m + 1), so that the
residues at these points are zero. With this integrand, the
integration contour can be chosen to enclose the entire
real axis. Given that the integrand is an antisymmetric
function with respect to / = —3 [following from Eq.
(9), which shows that P = P* , ], the residues at
—m-—1, —m—2, —m —3,..., are equal to the resi-
dues at m,m + 1,m + 2,.., respectively. The integral,
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therefore, represents twice the sum in (11). If it can be
shown that the integrand vanishes rapidly enough at in-
finity, integrals over semicircles at infinity will not con-
tribute and the integral will be equal to the sum of all
residues off the real axis. This is indeed the case, as will be
shown in Appendix A. According to formulas (A16) and
(A22), the integrand behaves asymptotically as

3‘_|/1|_z(e”ea'+|”_9b|”m/”/e|“m/”), (21)

where . is a constant depending on a, 3, 6, arg A. For
0, > 0,, this expression goes faster to zero than |A| ~
which is enough to make semicircle integrals at |1| = «
vanish.

B. General Poschi-Teller potentiai

The differential equation for the fixed-energy ampli-
tude (6|6,) 4 p 5 of this potential reads

# d? A B 2ME 010
2M d02+s1n 7] cos29_7 (0102) 455
— i#5(0—6,), (22)

with 6<€]0,7/2[. We shall assume that A5~B since, other-
wise, the potential would be symmetric with respect to
6 = w/4 and the transformation 60— 6/2 would bring us
back to the case treated in the previous section. Let the
motion of a free particle in four dimensions be parame-
trized by the radial distance r and the Euler angles 9, ¢,
and 3. Then, its azimuthal fixed-energy amplitude with
r=1 and at fixed quantum numbers m,,m,—the latter
are associated with the angles ¢, y—satisfies the Schro-
dinger equation:

M sin @ —

#? 4 d d 3
T sin6do d6 4

4(m% + m%) — 8mym, cos 8

_El

— %6 (cos 8 — cos 8,),

sin® 6
X (cos 0 |08 0,) m, m, £ =

(23)

and (cos 6 |cos 0,,),,,1,,,,2,5 vanishes at the boundaries

6 =0 and 0 = 7/2. A similar renormalization as for the
symmetric case, namely,

(6] 04) m,m, 5=2 (cos 20 |cos 20,) my,m, E

(sin 20 sin 26,), (24)
transforms this to the equation
# 42 (’711—”12)2—4l
M| " ae T sin’ @

(my 4+ my)* —; IME 1

cos? 8 T # 4

X(elea)ml,mz,E: _lha(e_ga)9 (25)
which is just Eq. (22) for the special cases where A
= (m — my)* — Yand B = (my + my)? — }with
integer m;,m,. For these 4, B, the solution for (22) can
immediately be deduced from the solution of Eq. (23),
which is well known to be

(cos 6, [€08 0,) i, m,E

i i 2L+ 1
L=m E—#[QL+ 1> —112M 2
Xy (05)dy i (6), (26)

where the d

rotation group The variables M = max{mm,} and
m,m,,L are either all integer or a// half-integer. Owing to
Eq. (IV.2.1) in Ref. 12,

m, 1€ the representation functions of the

dyy i (0)=(—1)"1~"dy . (6), 27
the product dﬁpmz(@b)dfnl
spect to interchange of m, and m,. Thus, we can suppose
without any loss of generality that m; > m, and omit the
absolute values in Eq. (IV.2.6) of Ref. 12, which then
becomes

,,,2(90) is symmetric with re-

. 0_\/I‘(L+m1+l)I‘(L—m2+1)
my(0) T(L—m,+ DL +my+ 1) T(m,

This equation entails the relation

—m2+1)( 2

1—cos®

1 — cos 0)(m1 -mz)/2(1 + cos @ (my +my)/2
)

) . (28)
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dy o (0)=dy, ., (6), (29)
which holds even when d is analytically continued to
complex L, as long as m,m, are integers or half-integers.
It follows that the expression summed over in (26) is
antisymmetric with respect to L. = — 1. Furthermore,
the d function satisfies the following symmetry property
in the independent variable:'?

i (0)=(—DE=mdl (6 —m). (30)

my, — ny

Using this we can represent the sum again as a contour
integral,

1 J L T if
i Jg  sinm(L—m) E—#[(2L + 1) = 11/2M

X[(2L+ V)/2)dy, (8, —mdh, , (6,),  (31)

my,my

and rewrite this as

~1 " 7 iM 2L + 1
Wi Je sinw(L—my) 4% (L—Lg)(L+Lg+ 1)
Xdp (0 —m)dy, 1 (6,), (32)

iMT/(4%)

cos &, |cos O =
(cos 0, | a) mymy B sinm(Lg—my) ™ —m

iM T'(my—Lg)T'(Lg+m;+1)

where % encircles the entire real axis in a counterclock-
wise direction and

S E+-. (33)

Just as in the symmetric case, the real poles of the inte-
grand are situated at /=.., —m; —3, —m; —2,
—my—1 and I=my, m;+ 1, m +2,..., the poles of
m/sin 7wl for — m; — 1 <l<m, are again canceled by the
I' function in the denominator and the sum over residues
in the left half-plane is equal to that in the right one.
According to Appendix A, formulas (A16) and (A22),
the integrand behaves asymptotically as

./J“IL| ——Ze(|9(1|+[w~—6b|)|ImL|/e|wImL|’ (34)

ie., vanishes faster than |[A|~' as long as cos @,

< cos 6, Thus, as in the symmetric case, the result is
equal to the sum of nonreal residues and, due to Eq. (28),
can be written as

(6, — v)dfn';‘,%(ea)

T T4 T(m +my+ DD (my —my + 1)

(1 + cos 6‘,)(’"1“"2)/2(1 + cos 6,

2 2

XF(—LE+m1,LE+m1+ l;ml——mz—f—l;

XF( —Lg+m,Lg+m+ Lmi+my+ 1

where

(36)

1 — cos ea (my—my)/2
=)

)(ml + my)/2 ( 1 — cos eb) (my —my)/2

2

1 —cos 8,
)

1 + cos 6,

5 ), for 6,> 6, (35)

In analogy with the symmetric Poschl-Teller potential,
this function satisfies (23) and the associated boundary
conditions for arbitrary 4,B if the square roots in the
equations for m; and m, are chosen positive. Therefore,
the fixed-energy amplitude for the general Poschi-Teller
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potential with general 4,B is now known from the trans-
formation (24) of (35).

lll. FIXED-ENERGY AMPLITUDES OF SYMMETRIC
AND GENERAL ROSEN-MORSE POTENTIAL

A. Relation between P6schi-Teller and Rosen-
Morse potentials

We shall first show how the two types of amplitudes
can be related in Schrodinger theory. For completeness,
we also sketch the corresponding Duru—Kleinert path in-
tegral transformations to achieve the same goal.

1. Schrodinger theory

(i) Symmetric potentials. The azimuthal fixed-energy
amplitude in three dimensions satisfies the differential
equation {2) for which we have found the solution

(cos@y|cosb,), g=(— iM/F)T(m — Ip)T(lg+m+ 1)
X [©(6y— 0,)P; ™ (cos 6,) P ™

X (—cos 8,) + {0,<6,}]. (37)

The transformation 8- x with cos 6 = tanh x brings Eq.
(2) with (37) inserted to the form:

# o d I+1) "
— 5 thm—m (cos B(xp) |cos 6(x,))mE
= — #ib(x — x,). (38)

This is to be compared with the equation for the fixed-
energy amplitude of the symmetric Rosen—Morse poten-
tial, which satisfies

# il —A’ E|G E
{W ( ~de T cosh? x) o (%0 F)
= — #S(x — x,). (39)

Obviously, the solution is obtained from the previous
equation by making the substitutions:

m=m(E)=— 2ME/#, |= — i+ i — 4, (40)
so that it reads
(—iM/B)T(m(E) — DT{(I + m(E) + 1)

X [O(x — x,) P/~ m(E) (tanh x)

X P mE)(_ tanh x,) + {xox,}] (41)

Note that the energy dependence of the amplitude has
been moved from the lower to the upper index of the

Legendre functions. Similarly, as in the case of the sym-
metric Poschl-Teller potential we have to choose
Re m(E) > 0 to satisfy the boundary conditions that re-
quire the amplitude G(x,x.,E) to vanish at x = £ . In
the second equation of (40) the sign of the square root
can be chosen at will since /, = —/_ — 1 and the
fixed-energy amplitude is invariant with respect to the
replacement /— — / — 1. In the following section we shall
demonstrate how this affects the eigenstates of the sys-
tem. Contrary to the azimuthal problem, the symmetric
Rosen—-Morse potential admits free states since the poten-
tial is bounded from above, and we must be able to re-
cover them from the above expression.

(ii) General potentials. Undergoing a transformation
of variables 60— x with

cos O=tanh x,

Eq. (23) becomes

# 2
A e 2, 2
7 | =42 4mt o+ md)
e _ g
8m,m, sinh x 3
coshx ocosn?x| ¥ 1%a) imy i

with € = 2ME/#*. This may be compared with the equa-
tion for the fixed-energy amplitude of the Rosen—Morse
potential:

# d* ~
R R > 1 ' 2 _
‘2M v B’ tanh x + A’ sech” x E]
XG(xx"\E)= — i#ib(x — x’). (43)

We are thus led to the expression

G(xpxp,E) = (iMn/#)/sin w(L 4 — m;)

><afL"'m1’m2 (arccos(tanh x;) — 7)

X dL:‘;nl, B mz(arccos(tanh x,)), (44)

with

3

=g omEm 3 amER,
v

Ly=—i+31—4q" (45)

In terms of hypergeometric functions, the solution can
also be written as
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G(xa’xbyE)
iM T(my—Lg)T(Lgy+m+1) (1—tanhx,\"™~"2 (1 4 tanh x,\ (™ +m)/2
_ﬁl"(m1+m2+1)l"(m1—m2+1)( 2 ) ( 2 )
1 + tanh x,\ "™+ m2)/2 1] _ tanh x,\ (™1~ m2)/2 1 — tanh x,
(T) ( D) ) F( —Ly+m,Ly+m+1Im—m+ 1 —'““2-“")
1 + tanh x,
XF( —Ly+myLy+my+ Lmy+my+ I;T) . (46)

Since Eq. (23) is valid for arbitrary m,,m, the expression
(44) is the desired Green’s function if the signs of the two
square roots containing E in (45) are chosen positive.
Then it vanishes at infinity and thus respects the proper
boundary conditions, as can be seen from the definition of
the d functions in terms of hypergeometric series in (28).

‘, 2. The Duru-Kleinert transformation

For completeness, we outline here how the Duru—
Kleinert path integral transformation arrives at the same
result. It proceeds in two steps:'®

a. The ftransformation. Singularities in the potential
are removed by extending the resolvent operator with an
appropriately chosen regulating function f(x) >0 using
the obvious identity:

1
) — FO*
FOOMH—-E) f(x)! 4

% (47)
H—-E

More general regulating functions that depend on the
momentum p as well as on the spatial variable may be
admitted, but need not be considered in our application.
The operator 1/f(x)* (H — E)f(x)'~*is now rewrit-
ten as

1
FOMH - E)f(x)' =4

= fw ds explisf(x)*(H — E) f(x)' ~*]. (48)
0

The amplitude
(x, |explisf (X)*(H — E) f(x)' =] |x)

=(x, |exp[isH/]|x;)

can now, by time slicing the parameter s, be represented
as a path integral in the same manner as the time dis-
placement operator in the familiar form of the theory.

This regularization procedure amounts to slicing the time
axis in nonequidistant steps, the length of the intervals
being proportional to f(x).

b. The h transformation. When going over to H 1, the
kinetic energy term has no longer the standard form, but
reads

d2
fo)lzgifo)l“-

To restore the standard form of a pure second derivative
one performs a variable transformation to new coordi-
nates x = h(g) with some suitable function #(g), which

satisfies 4’ (g)? = f(x). Then
d ! dx—h'(q)d
ax "W (q) dg’ x—h'(q)dg,
2 2

d d
SO @) gt (49)

The dots denote new terms collected in an effective po-
tential energy V 4(q) arising from the variable transfor-
mation which has to be added to the classical action of
the transformed system. It can be explicitly calculated as

ﬁz lhm 3 h" 2
Val@)=~7 [ﬁ‘g (;T) ] '

Let us apply this method to our systems.

(1) Symmetric potentials. The fixed-energy amplitude
of a particle moving in a symmetric Poschl-Teller poten-
tial reads in configuration space:

f: dtf@@exp(%%[e]),

with the classical action

(50)

(51)
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i\
M[G(T)]=f d’r[ (d—e) +8—ﬂ

2 1
2 om =i

oM sin® 0 + (52)

Using the regulating function
f(8) =sin? 6,

with A = 0, we can rewrite this as the f-transformed ac-
tion

M d62 # 0
2 sin? O(da ) +Wsm

@ol= [ do

7,1 Eein 0
~2—ﬂ(m—-z)+ sin .

The kinetic energy is brought back to conventional form
by the variable substitution 8- x with

(53)

sin 0=1/cosh x, (54)

mapping the interval JO;#[ into ] — w0, 0[. The effective
potential is then

Veg(x) = (#/8M) (1 + 1/cosh® x), (55)

and the Duru—Kleinert transformed action becomes

o M (@ > #m? p !
.MDK[x]=f0 7 7(%x) %M TP Cosh’x
(56)

(ii) General potentials. The fixed-energy amplitude
(cos 6 |cos 6,) from Eq. (23) can be represented as the
following path integral:

(cos @ |cos 6,)

1 w i
_— de | 26 - #[0]],
Jsin 6 sin eafo f exP(ﬁ [ ])

(57)
where the action is now given by
d ” LA
M[O(T)]:f T ar +@
#2 m? + m? — 2mym, cos 6
e ———+E|, (58)

T 2u sin’ 0

with the auxiliary mass p = M/4. Exactly the same
Duru-Kleinert transformation as in the symmetric case
leads to the transformed action:

p(d \?
2(%)‘)

— @ (m% + 2mm, tanh x)

L olx] = fo do

3% 1
) (39)

+(E‘§$

cosh? x

IV. EXTRACTION OF EIGENSTATES

The method we use for extracting the eigenstates
from a fixed-energy amplitude is well known. It is de-
scribed in detail in the textbook Ref. 13, Chap. 9 and in
Ref. 16. The bound-state eigenvalues are given by the
poles of the fixed-energy amplitude G(E), the residues at
these points give, up to i#, a (tensorial) product of the
bound states themselves. The continuous part of the spec-
trum corresponds to a branch cut of G(E), a tensor prod-
uct of free states can be extracted by calculating the dis-
continuity of G(E) across the branch cut, which must be
chosen to coincide with an interval [a; «0 ] on the real axis.
For simplicity, we shall refer to this free-state disconti-
nuity also as “residue.” When citing fixed-energy ampli-
tudes in this section we shall omit all ® functions and
inequalities specifying the order of their arguments, since,
in the residues, the order becomes irrelevant. The free
states will be normalized such that

<\I,(J)|\I,(J) ,j'S(E—E’),

where j is some degeneracy index that may be necessary,
as will be seen below.

A. Eigenstates of symmetric Rosen-Morse potential

1. Calculation of bound states

The bound states are calculated from the residues of
the fixed-energy amplitude G(E) in Eq. (41). Its poles
E, are all contained in the first I" function of the normal-
ization constant. They can be calculated from the equa-
tion

V— QM/#)E,— I= —n, neNU{0}. (60)

The fixed-energy amplitude has the correct boundary val-
ues only if we choose Re — E > 0. From this it follows
that bound states only exist if />0, i.e., 4’ <0 and that
their quantum numbers are subject to the condition
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O<n<l=—31+ J1—44'72.
For these n we have
E,=— (#/2M)(1 —44'/2 —n -}~ (61)

This result agrees with the one found in Ref. 14. Using
the formula

lim (E — E)T[ f(E)]=[1/f(E)][(—1)"/nl],

E-E,

which is valid for f(E,) = — n and can be proved with
de ’'Hopital’s rule and using (19), we obtain for the res-
idues of the fixed-energy amplitude:

lim (E —_ E,,)G(g,g',E)
E-E,

—iti— E,(1/m)T( + = 2ME /B + 1)

XPI e P iE. (62)

The correctly normalized wave functions corresponding
to the bound states of the system are thus given by

bu(x)=I—nT(2I—n+ 1)/nP} ' (tanhx). (63)

Comparing this with the formula (see Ref. 15, Sec.
7.122.2):

T(1+p+9)
W —p+v)’

1 [PY2))?
J, a5 -

which is valid for Re u <0 and positive integer v + p
—and taking into account that, due to (19), the inte-
grand is a symmetric function—confirms our result for
the normalization constant.

2. Calculation of free states

Crossing the branch cut on the positive real axis
changes u into — u. The potential being symmetric with
respect to x = 0 we expect the eigenvalues in the conti-
nous spectrum to be doubly degenerate, the two linearly
independent eigenstates corresponding to waves that are
propagating to the left and to the right. We shall use the
abbreviation

y:=tanh x.
If we succeed in writing the discontinuity across the cut

in the form

1
oy [Gowyptt) — G(YasYp — 1) ]

~

Y (3 )W (), (64)
1

i

7

where j distinguishes the degenerate states, we will be
able to read off directly a set of orthonormalized free
states for each E > 0. The discontinuity of our problem is

2wt Y VL IV ()
J

=(—iM/B)T(u— A)T(A +p+ P (y,)
XPH*(—yp) + GM/B)T(—p—A)
XT(A —p+ DP) P —yp)- (65)
We now define the abbreviations

Fi=(—iM/A)T(p—AT(A+p+1),

Yi:=PL(y,), Yo:=P(—ps). (66)

Given that u is purely imaginary when E belongs to the
continous spectrum and all other parameters are real, we
can conclude that

¢?:=PA_”(ya)!

Wh=PH(— ). (&7

The residue can therefore be written as

[Goyptt) — G(Yaye — )]

2
=2 >, ¥ )vY (1)
j=1

=FVEIVE ) + F * Y1 () (7). (68)

Using formulas (13) and (19), together with (14) and
(15), we see that

W=, + B,

69
=Y+ B, )
with
FrA—p+1) sin mA
"T(A+p+Dsinm(p+2)’
| - 1 i
7 ( u+1) sin U 10)

TTA+p+ Dsinm(p+A)

The residue (68) then becomes
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2
2wrhi Y, VY )VE ()
Jj=1

=(F o + X *AL* W) ()
+ F BYF ()01 (vp)

+ F* B V) (). (71)

Now the fact that u is the only nonreal parameter and
purely imaginary, at that, entails

Vo —iMF (A : sin A
== -l -—p+DE oD
—iM s sin mA
T # sinm(u—A)sinm(p+A)
iM T sin wA
(72)

k3 lsin‘n'(,u+ﬂ.)|2’

so that ¥ o/ is purely imaginary, too, and the first term
drops out whereas %" 4 is real and can be calculated to
equal

# A= - DA —p+ 1) T
=z (—ATrA—p+ )simr(p+i)
iM sin( — im|p|)
T #% [sinm(p+ )2
M  sinhw
_Mn |1 73)

fi |sinm(u+A)|*’

where p = — i|p|, because Eq. (64) is only valid if val-
ues of the Green’s function below the branch cut are sub-
tracted from values above it. Now, we had agreed to take
the real part of u = \/ — E to be larger than zero. From
this we deduce, with E = re, for the imaginary part
above the cut, i.e., for ¢€]0,]:

(1/r) Im{ — E=Im '~ 72+ #/2)
=Im[sin(@/2) —icos(@/2)]
= — cos(¢@/2) <0. (74)

A pair of orthonormalized free states with energy E
= u’#?/2M is finally given by

M sinh7|u|
(+) g ———— 1 P¢
Ve )=\ Tnm(u + A)] 4 (tanhx).
M ysinh 7|u|

272 [sin w(p + 4) |

(75)

Wi (x):= P4( — tanh x).

B. Eigenstates of general Rosen-Morse potential
1. Calculation of bound states

Using (46) and the abbreviations
z=(1+tanhx)/2, r=3Vpg' _ IME/R,
n=iV\_ B _IME/#, L=L,, E=2ME/#,  (16)

where we shall assume that Re 7, Re r, > 0. We can write
G(xzxp,E) as

—iMT(L+r+n+)(rn+rn—L)
% T2+ DT Q2+ 1)

XZH1 — z,)"X 2z (1 — z)"
XF(—L+r+r,L+r+rn+12n+1z,)

XF( -—L+r1+rz,L+r1+r2+ 1;2r1 + 1,1 —Zb).
(77)

The I' functions in the denominator of this expression
make sure its hypergeometric part is well defined for any
values of 7y,7,. Its poles in the energy-variable E are all
caused by the I" functions in the numerator. Therefore
the energy eigenvalues of the problem can be calculated
from the conditions

rn(E) + r(E) —L= —n, neNU{0} (78)
or
r(E) +r(E)+ 1+ L=—n, neNU{0}.  (79)

Because of our convention Re 7;, Re , > 0, only the first
equation will yield physical energy levels that are, more-
over, subject to the additional constraint

L=Y(\1=44 — 1)> \2[B'|/2={r + "}miw

where “min” denotes the smallest real value the function
r(E) + r(E) can take. Incidentally, this implies, of
course, that 4’ has to be smaller than zero. If this condi-
tion is satisfied, then it follows

# B'? 4+ 4(L —n)*

Ev=—om 4(L —n)?
# 4B+ 2n+ 1 — 1 —44")* (30)
TU2M 4Qn+1— \1—-44)2
defined for

0<2n< 1 —44" — \2]B'| — 1.

Our result agrees with the one found in Ref. 2. For a
function f with f(E,) = — n, we have
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(=1 The residues of the fixed-energy amplitude can therefore
;i“b{n(E_En)r[ ﬂE)l:m n be given as
I
. 4rir, (-1
lim (E — E,)G(z,2' ,E) =it IFQL—n+1)(zZ)"[(1—=2)(1—-2")]"
E-E, rn+r, n
FQL—n+1,—ml +2r;z) FRL—n+1,—n1 +2r;1 —2') 81
r(1+2r) T(1+2n) ' (81
Using Eq. 5.2.49 in Ref. 16,
Fa+b—c+1)I'(1—c¢) Ta+b—c+1I(c—-1)
Flaba+b—c+ 151 _z)_F(b—c+ Dfa—ct D) F(a,b;c;z) + NOINO)
XZ' " F(b—c+ la—c+ 1,2 —¢2), (82)

witha = r(E,) + r(E,) — Lb=r(E,) + n(E,) + L + l,c=2r + 1, and observing that the second term
that would be singular at z = 0 vanishes for E = E,, since

1/T(r (E,) + r,(E,) — L)=0,

we finally obtain

lim (E — E)G(z2'E #idnn, (-D" : L L(r,+rn+L+DI(-2r)
E‘j‘;"( —E)Gz By == —— (@)U =) =) e R o TN — 4 L+ D)
XFQRL—n+1, —ml 4+ 2r;z2)FQRL —n+ 1, — n1 4+ 2r;2'). (83)

Owing to the relation

Tb+n)/TB)=(—D"T(1-b)/T(1—b—n)]
applied to

b=r,—rn—L, n=—r—n+L, b+n=-2r, (84)
we can rewrite this as

4rir, T(ry+n+L+1DT(r—r+L+1)

lr] - _I r2 _ . . .
lr1+r2 AEA 120 (-t L+ 1) zz2)"[(1 —2)(1 =2")]2FQL —n + 1, — n;1 + 2r;;2)

XFQL—n+1,—ml 4+ 2r;2). (85)

The normalized wave functions are thus

¥ (x) \/4r1r2 F(r2+r1+L+l)F(rl—r2+L+l)(1+tanhx)’1 (l—tanhx)'2
n\X)=

r+n n!F(1+2r1)2F(r2—r1+L+1) 2 2
1+ tanh x
XF(2L~n+1,—n;1+2r1;~—2—) . (86)

They contain Jacobi polynomials
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Cla+1+1)

(a.B) __
LA s Yy,

F[—-I14+a+B+La+ 1;(1 —2)/2], (87)

in the following form:

¥ (x)= \/ 4rr, L(rn+r+L+1n 1 + tanh x\"t /1 — tanh x rzp(2r1’2rz)( _tanhx). (88)
n r1+r2F(r1-—r2+L+l)r(rz—r1+L+l) 2 2 n ’
T
O}xr result for the nqrmalization constant is in agreement Vi(2)¥g(2')
with the one found in Ref. 17.
2. Calculation of free states =(1/21H) [G(z,2',ryry) — G (2,211, — 1) ] (89)
Case I: —B' <E<B'. For — B' < E < B’ crossing the
branch cut on the real axis transforms r, into — 7,. A free
state ¥ ;(z) must then arise from Therefore

Ve(2)Ve(2')=(— iM2a#*)T(ry + ry+ L+ DT (ry+ 1, — L) (22')1[ (1 — 2)(1 —2z')]"?

Frn+n+L+1n+rn—Ll1+4+2r;z) IM
X F(271+1) +2ﬂ_ﬁzr(r1—r2+L+l)r(rl—rz—L)

F(ri—n+L+1,rn—r,—L;14+2r;2)
r@2r+1)

X(zz2)1[(1=-2)(1=-2)]~"

><F(rl —n+L+1rn—r—Ll-—2r;1—-2')

rc-—2r+1) (90)

In Appendix B we have proved that
V(1 —z) " 2F(ry—n+ L+ L,ry—r—L1+2r;z)=21(1 —2)2F(ri+r,+ L+ Lr+r,—L;1 4 2r;z). (91)

Therefore we can factorize the first function in (90) to obtain

—iM
Vp(z)Wge(z')= py @2 (1 —=2)(1 =2)]12F(ri+r+ L+ Lry+r,—L;1 +2r;2)

1 (T(rn+r+L+ D +r—L)
™ T(2n + DT (2r)

F(ri+rn+L+1Lr+rn—Ll+4+2r;1—2)

F(rl ——r2+L+ I)F(rl -—rz—L)

T2 T DI —2r)) (1=z) " "F(ri—rn+L+1,r,—r—L1—2r;1—2)}.

(92)
If we make the substitutions a + b —c + 1-c and z—1 —z in (82) and set
a=rn+n+L+1, b=r+rn—-L, c=2r+1 (93)

The expression in curly brackets can be simplified to
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Iry—r—L)T(n+n—L)T(rh—n+L+1)I(rn+rn+L+1)

T2 + DIT(=2r,)T(2r) F(ri+r+14+Lr+rn—Ll1+2r;z). (94)

Equation (91) shows that the function

(1 —z2)2F(ry+r+ L+ L+ r+ Ll 4 2r;z)

is real valued as long as z is real, so the correctly normalized wave functions can now be read off:

/ M
¥a(a)= 477'ﬁ2|"2|

XF[ry+r+ L+ Lr+r— L1 +2r;(1 4 tanh x)/2] (95)

}F(r1+r2—L)l"(r1+r2+L+ 1)

T (2r, + DT(2r,) [(1 + tanh x)/2]"1{(1 — tanh x)/2]"

for the square root in the coefficient we used — i/r, = 1/|r,| [compare with the discussion following Eq. (73)].

Case II: B' < E. For B’ < E, crossing the cut amounts to making the fwo substitutions r,— — r, and r, » — r;. Besides,
we must expect each of the eigenvalues above the upper bound of the potential to be doubly degenerate. The residue of
the fixed-energy amplitude will therefore have to be represented by a sum over a degeneracy index 4:

1
Y YP (2P (2) =5 [G(z2',mry) — G(z2', — i, — 1) . (96)
T 27h

Thus

—iM

s L(n+n+L+ DL (ry+r—L)(z2)"[(1 —2)(1=2")]"

S v ()P ()=
A

F(r1+r2+L+ l,rl-l'-rz—'L;l +2r1;2) F(r1+r2+L+ 1,r1+r2'—L;1 +2r2,1 —Z’)
X T+ 1) Tn+1)

M
t53 T (=n=r+L+DI(—n—r-L)E@) " "[1-2(1-2)]""

><F(—"1—7‘2-f-L+1,—7‘1—7'2—L;1——2r1;z)

r(—2r+1)
F(—ri—rn+L+1,—r—r—Ll1—-2r;1 -2
N (—n—n+ 1— " 2 )’ (97)
L(—2r+1)
with the abbreviations
—lMF(rl +r2+L+ l)F(rl +7'2—L)
K(r,n)= 93 ’
2mhi r2r+0r2r,+1)
Fi(ryrpz)=21(1 —2)2F(ry+ r, + L+ Lry + 1, — L;1 + 2r32), (98)

Fy(ryrl —2)=21(1 —2)2F(ri+ r,+ L+ Lry+r,— L;1 + 2r;1 — 2),
we can write as well

S WP )P (') =K (r,m) Fi(ruruz) Fa(rurl — 2') — K(—r, = R)Fi( =1, — n2)Fy( —rn, — 1 =2).
p)
(99)
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In Appendix B we have shown F(r,r,,z) to be invariant
with respect to a change of sign in 7,. An analogous proof
can be carried out for F,(ry,r,1 — z') and ry, so that we
have

Fl(rl, - r2,z) =F1(r1,r2,z),
Fz( — rl,rz,l ——Z) =F2(r1,r2,l —Z).

Using this and Eq. (82) we can deduce the following
relations:

F(—r,—rl—2)

=mﬂ( — Iy, — FpZ)

+ Fy(ry,r,z),

—2nK(—r,—n)

1

Finnd) =5 s

Fl(r13r2’1 _Z)

1

+m1’1( —r,—nl1—2z). (100)

Solving for F(ry,r,,z) and F;( — r;, — r5,1 — z) and sub-
stituting the resulting expressions in (99) leads to

2 > WP (2)* P (2)
A

= —2nK(r,m)K(—r, —rn)Fy(—r, —ry

1 —2)Fy(ry,ryl —2') — 21K (r,r) ) K( — 1y, — 13)
XF( =1, — rp2)Fi(r,r.z'). (101)
Now we have

—2nK(r,n)K(—r, —n)

iM /27 sin(m2r,)
T sina(ry + 7y + L) |’T(1 + 2r,)T(1 — 2r,)

—2nK(r,r)K(—r,—n)

iM/2#* sin(w2r,)

Tlsina(ri+r+ L) 2T+ 2,)T (1 —2r))
(102)

As, furthermore,

Fl( — _rZ’Z):F](r],rZ,Z)*,

Fy( —r, —nr,1 —z)=F,(r,r,1 —2)¥ (103)
I'(1—2r)=0C(1+2r)*

the normalized wave functions are

VM sinh(7|2r,|)/2

1 _
Ve =r 0 o 7 [snatn + 1+ D]
14 tanh x\" /1 — tanh x\ ™
() ()
XF(r1+r2+L+1,r1+r2——L;l
1 + tanh x
+2r1;—2-—),
VM sinh(7|2r,|)/2
Vi(z) = ‘

T T(1+42n) #lsinm(ry+r+L)|

1+ tanh x\"t /1 — tanh x\ "
) (=)

XF(r1+r2+L+1,r1+r2——L;l

+ 2ry;

1 — tanh x
—) ; (104)

2

which properly reduces to (75) for B’ =0, i.e., for r
= r, = u/2. This can be seen by using Egs. (100) and (9).
It is here that we see a difference between our results and
those obtained in earlier works. In Refs. 9 and 10, the
Rosen—-Morse states are derived from the eigenstates of
the modified Poschl-Teller potential, which has bound-
ary conditions that do not permit degeneracy of the free
states. (Due to the singularity in the latter potential the
wave functions have to vanish at 0 and «.) Our deriva-
tion yields two orthogonal states per energy value above
the Rosen—-Morse potential barrier. It would appear that
physical intuition is on our side since in a one-dimen-
sional potential without singularities one always expects
to have two linearly independent scattering states corre-
sponding to waves that are propagating to the left and to
the right.

V. CONCLUSION

We have carried out the summation in the spectral
representation of symmetric and general Poschl-Teller
fixed-energy amplitudes. The close relationship between
the Poschl-Teller potentials and azimuthal systems on
the one hand and the symmetric and general Rosen—
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Morse potentials on the other enabled us also to write
down a closed-form expression for the fixed-energy am-
plitude for the latter systems. We have seen how all the
eigenstates of the Rosen—Morse potential together with
their normalization constants can quite easily be ex-
tracted from this amplitude. In the transition from the
Poschl-Teller (or azimuthal) problem to the Rosen—
Morse potentials, free states emerge, which are not
present in the initial potentials. Their appearance is due
to the fact that when transforming one system into the
other the energy dependence of the fixed-energy ampli-
tude is shifted to the analytically continued azimuthal
quantum number. In the case of the symmetric Rosen-
Morse potential, it is shifted from the lower index A to the
upper index p of the associated Legendre function. The
Poschl-Teller amplitude contains the function P’,{( E)
which has no branch cut in the variable E, even though
A(E) contains a square root. Indeed, it can easily be seen
that P4 g, is continuous across the branch cut of this
square root on the real axis. For real E,

-0
Pirrio =P 1y (asaniim (105)
and
€—>OFL
Pig—io =¥ _ 1o \asomem (106)

Now, Eq. (9) shows that
Po=P_;

so that the two functions above are identical for € =0.
When the energy dependence is moved to the upper index
i1, on the other hand, the discontinuity over the branch
cutof u(E) = i — 2ME/# is no longer zero, since from
Eq. (13) we see that the two functions P‘/{(E) and
Py #(E) are, in general, linearly independent.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF
HYPERGEOMETRIC FUNCTION

1. Integral representation

We wish to find the asymptotic behavior of

Fl —AA+a+B+ 151 +a(1 —2)/2],

FIG. 1. Integration contour for hypergeometric function.

for |A| — 0. We start with the following integral repre-
sentation of this hypergeometric function [see Ref. 16,
Eq. (5.3.19)}

I'(l+a) 1—2z\—¢
1“(/1+1+a+/3)1“(—/l—/3)( 2 )

(1—2)/2
XJ- dt[(1 —z)/2 —t] A B-1A+a+h
0

X (1—nh (A1)
Under the transformation

t=(1-1)/2,

dt= —idr, (A2)

this becomes

F(14a)2 %@ 1—z\"¢
F(/1+1+a+/3)1“(—/1—/3)( 2 )

1
X f dr(r—z)~* P11 —n)Atetb 4+ 0t
‘ (A3)

The integrand is supposed to be real on the interval [z1].
This representation is valid for

N — -

FIG. 2. Deformed integration contour for hypergeometric function.

J. Math. Phys., Vol. 33, No. 2, February 1992



658 H. Kleinert and |. Mustapic: Summing the spectral representations

FIG. 3. Deformed integration contour for hypergeometric function.

Re(1+a)>Re(A+1+a+B)>0.

Another representation that is valid for arbitrary complex
values of A,a,f can be found by rewriting (A3) as a
contour integral over a contour %, which is depicted in
Fig. 1.

The integrand has branch points as — 1, z, + 1, their
branch cuts are chosen to run to — « along the real axis.
The broadening of the cut is to indicate that there is, in
fact, superposition of branch cuts, but, for general a,5,4,
no cancellation. Since the cuts are crossed twice in oppo-
site directions, the contour is closed on the Riemann sur-
face of the integrand. Note that it can be deformed in the
two manners shown in Figs. 2 and 3.

The latter contours will be useful for understanding
certain more complicated deformations to be performed
further below. The contour % being closed, the function

f dr(r—z) " AP 1(1 —r)*TetB(l 4+ )t
4

o (I_Z)~ f dr(r—z) ~*-B-1
2 ¢

X (1 =)t +e+B(1 4 )4, (A4)

according to Morse-Feshbach, must be a solution of the
hypergeometric equation. What is more, this solution is
defined for arbitrary A,a,B. We shall now show that,
choosing an appropriate .&/, (A4) can be made into an
analytic continuation of (A3). We first note that, for
Re(1 + a) >Re(A + 1 + a + B) >0, integrals along cir-
cular integration contours around the branch points z, 1
will go to zero when the radius of these contours goes to
zero. Going around the branch points will then provide
the integrals over the contour sections 1,2,3,4 with the
following phase factors:

along 1: mA+a+h)

along 2: €mGA+a+3p)
along 3: ™A —a+h)

along 4: ™ —4-a—H, (AS)

This shows again that & is a closed contour. In what
follows we will always write the integrand as

phasex (r —z) ~*=B—1(1 — p)A+atB(1 4 1A

In this way, we will be able to suppose, that
(r—z)"*=P=Y1 =)+ 2+B(1 + 1)* is always real
on the interval [z;1]. For Re(l1+a)>Re(A+1+a
+ B) >0, we can thus write

1
=[e—i1r(i+a+[3)_eifr(11+a+B)_ei1r(/1—a+B)_+_ei1r(3/{+a+3ﬁ)] f dT(T__z)~/1—B—1(1_T)l+a+5(l+7)/l
z

1
= — 4™ B+ Dginr(A+a+B) sinm(A+ B+ 1) f dr(r—z) A= B-1(1 —p)A+tea+B(1 4 )4 (A6)

Thus

1—z\ e—imA+B+1)
2 )

F(—/l,/1+a+B+1;1+a;

1—z\—¢
=" e DU+ @T U+ 14BN (= A—a—p) ()

xf dr(r—z) ~*=B-1(1 — p)A+ea+B1 4 A (A7)
¢

J. Math. Phys., Vol. 33, No. 2, February 1992



H. Kleinert and |. Mustapic: Summing the spectral representations 659

2. Application of saddle-point approximation

This representation is amenable to saddle-point anal-
ysis, as will now be shown. The integrand can be written
as

exp[(=A—=B—-1In(r—2)+ A +a+pB)
XIn(l —7) +Aln(1 +17)].

_

The saddle points can be found by setting the first deriv-
ative of the exponent equal to zero:

A+B+1 A+a+P A _
T Tr—z 1-7 T1t7 "

There are thus two saddle points situated at

=TT A +a—1)

For |A| - « the positions of the saddle points converge
toward

ro=z+ 22— 1.

We shall assume that the usual saddle-point method with
fixed saddle points can be extended without modifications
to the present situation, where we have “moving” saddle
points, and expand the exponent in the integrand to sec-
ond order around the limiting values of the saddle points.
The second-order coefficients are given by

A+B+1 A+a+B A
(12 —2) (12— 1) (1o + 1

After a change of variables,
z—0, z=cos 9,

the limiting positions of the saddle points take on the
form

T+ =ei'9.

The value of the integrand at these two points is

Re f Re f
f(e.'u)
f(e)
|
+>0 Im f Im f 2 <0
FIG. 4. Mapping of paths by the integrand factor

fr:= QA — 73)/(r — 2).

_(2ﬂ»+a+B)z—a—Bi\/(2/1+a+3)2—a—B2
[ 2A+a—1) -

A+B+1—-(a+B)z

Tra—1 (A8)

[(1 —e*®)B/(xisin )P +1](1 — e* ) —2)%e*H?

+

=% . (A9)

The phase of ( — 2)" is determined by the requirement
that the function

(r—2z) =11 —n)e+P[(1 =7V /7 —2z)4, (A10)

be real on the interval [z;1]. Its value for 7 = ¢ can be
determined by analytically continuing it from the real
axis, i.e., along the path

2(@)=[1—€(1 — @/0)]€%; ¢€[0,6],

with € a positive number smaller than unity. We can
assume that all three factors are real on this interval.
Now the function

(1—=7%/(r—2)

maps the path z(@)—qualitatively—into one of the paths
in Fig. 4, depending on whether z> 0 or z <0. The length
of the path depends on 8. The phases along these two
paths can be parametrized by

e %, £[0,E], O0<E<m,

where e~ = — ¢ The phase of the third factor must
therefore have the form

P M:,

where Z€[0;7]. For + = e~ ™ an analogous reasoning

applies and the phase we are look ing for has finally to be
chosen as
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(= 2)he*iA0_ phg=ik(0—m) (A11) ay:=||/sin 6. (A12)

The second-order coefficient is equal to For the saddle-point method to work, the integration
contour has to be deformed in such a manner that, on the
cion2 sy 20 saddle points, it is tangential to the two straights, defined
A+a+B 1+ + A1 —e*®) —4(A+B+ e by

e*2% sin” 0

e:ti6+ é—ei(te/2+¢/2=¥=1r/4)’§€] — %000 [

For |A| - w0, this behaves as
If it can be shown that only the saddle points of the

FA(e™¥i/sin 0) =e~ 4*0ETD (|11 /sin 9), integrand contribute to the asymptotic behavior of the
' function, then, for sufficiently large |1|, the integral in
where A =| A|e ™. We shall write (A7) can be evaluated approximately as

. + . + x
S {opneites2+ -4 f drexplag — ay(r — 7, )2] + agbielt ~ 92+ 424 70 f dr
-

J

— 0

Xexplay —ay(t1—7_)%

-3

J

, (A13)

0 g2+ 872 = /%) [T gait + obieil 02+ 924 /) /1 %
a, a,

where the summation extends over the different sheets of the Riemann surface that take part in the integration, 7 56 are
the corresponding phases and o; = 1, depending on the orientation of the path. In applying the method we have to
distinguish two cases.

A. Case 1: Re: A>0

For sufficiently large ||, the integrand has zeros at 7= — 1 and 7= 1. The contour % can then be deformed as
shown in Fig. 5 (cf. Fig. 3), since then the small circlelike contours around + 1 in Fig. 3 can be contracted to a point.
The “ + * signs in the figure indicate the limiting positions of the saddle points. The paths 2 and 3 are running on top
of each other across the upper saddle point and the paths 1 and 4 across the lower one. In the figure they were separated
to be distinguishable. The integrand vanishes at the limits of the integrations along these four paths. According to
Dingle,'® this is a sufficient condition for the two saddle points to contribute additively to the asymptotic behavior of the
integral. The asymptotic behavior of (A7) is therefore given by

. . T (1— )8 _ e™® T(1+a)TA+B+1) /1 —cosf) ¢
1i(0/2 + ¢/2 — w/4) A0 : _ Lifha
21 N 0 Gamar U ) e T T e B D) ( 2 )

24l — 072+ /2 + m/4) , — iAB Lm (1—e™®)F (1—e-0)a
|A] (—isin §)FFT

e ™ T(1+a)[(A+B+1) (1 —cos | ¢
X—=a73 . (A14)
2 FA+a+B+1) 2
I
The contribution of the ' coefficients can be evaluated FA+B+1)/TA+a+B+1)~1"" (A16)
with the formula (see Ref. 16, p. 443)
The result of (A14) thus becomes
C(z+1)~ \/2_,”.2z+1/23—z’ (A15) ya,ﬁ(e)i—a—lﬂei/w_'_ ga’ﬁ(em—a—l/ze—iw’
(A17)

for |z| - o0. It shows that where
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: (1—é€9)P o e 1 —cos ) @
G __";,i(8/2 —7/4) : _ Libya
F op(0)=2ie V7 sin e—B_(isin 9P+ (1—¢€%) Y 't +a) ( 2 ) , (A18)
(1 __e—ie)ﬁ e—in',B

1—cosf\ ¢
e —i6/2— /8) : _—itva
G o p(0)= — 2ie \}Wsme———T—(_l,Sine) ri(1—e™") 72a+21“(1+a)( 3 ) .

B. Case 2: Re: A<0

For sufficiently large ||, the integrand has a zero at 7 = z. The modulus of the integrand behaves for |7| - o as
const X | 7|~ IReA] Quarter-circle integrals at infinity therefore do not contribute and the contour % can be deformed
as shown in Fig. 6 (cf. Fig. 2) because, for Re A <0, the integrand has zeros at z and «. The right-hand part of the
contour in Fig. 2 can be stretched to infinity and rotated so as to run parallel to the imaginary axis. The small circlelike
contours around z can be contracted to a point.

The asymptotic behavior of (A4) is therefore given by

21072 + /2~ w/4) i msin 6 (1— e’ 1— i9aeiﬂ(ﬁ+a) F'l+a)l(-4A—a—p) (1—cos )¢
* CNTAT Gsmoprt =€)

,n.za+2

r'(—1-p8) 2

. 4o [TSNO (1—e=©)F .
+2iez(—6/2+¢/2+7r/4)e~1/19 |/‘L| (_isina)ﬂf(l_'e_lo)a

X

72 +2 | ) 2

After calculating the contribution of the I" functions as in
(A16),

I'(—A—a—-B)/T(—A=-B)~(—4) "¢ (A20)
we can write the final result as:
ef”“ei“’/zfa,ﬁ(e)( _A) a4 Ve

_ e—iqmeizﬁ/Zya,B(e)( —A)Te|A| V2%, (A21)

3. Summary of Appendix A

The results (A17) and (A21) can be summarized in
the following formula:

e~ B+ P14 )T (—A—a—p) (1 — cos 9)_“

(A19)

1—cos@
lF(—A,/1+a+B+1;1+a;—)|

2

[A]—w
R e¢Imal%a’B(9)'|A|—Rea—1/2e|01ml|, (A22)

where A = e~ "|A| and & ,4(6) is independent of A.
The formula is valid for 6€]0;.

APPENDIX B: PROOF OF EQ. (91)

Both sides of the equation are solutions of the Pap-
peritz equation:'®

FIG. 5. Deformed integration contour for Re A > 0.

FIG. 6. Deformed integration contour for Re A <0.
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& 1—A-X
( dz

l—p—p'\ d
5 |

z + z—1
B AL
T 1) Zz-1)

vA+A +p+p +v—1)
- 2(z—1)

G(z) =0, (B1)

with

21 —2z) " "2F(ri—r,+ L+ 1,ry—r,—L;1 4 2r;z)

A= —A'=r, pu=—u'=r, v=L+ 1 (B2)

Obviously, after substituting 7, -— — r,, we still have a
solution of the same equation. This means that the func-
tion resulting from this substitution must be a superposi-
tion of the function before the substitution took place and
any other, linearly independent solution. Consequently,
there must exist constants &/ and %, such that

=1 =2)2F(riy+r+L+1r+r—L2r+1;z) + Bz7"1(1 —2)2

XF(—r1+r2+L+l,r1+r2—L;—2r1+l;z).

But, the function on the left-hand side has a zero at z =0,
whereas the second function on the right-hand side is
singular for z = 0. We therefore conclude that

# =0.
On multiplying with z~ " and setting z = 0 we obtain
o =1,

so that the substitution r, - —r, actually does not
change the function.
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