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Motivated by the discovery of errors in six of the 135 diagrams in the published five-loop expansions of the fl-function and the 
anomalous dimensions of the O(n)-symmetric ~4-theory in D=4--E dimensions we present the results of a full analytic reeval- 
uation of all diagrams. The divergences are removed by minimal subtraction and e-expansions are given for the critical exponents 
q, u, and 03 up to order ~5. 

1. During the last two decades, much effort has been invested into studying the scalar quantum field theory 
with ¢4-interaction. On the one hand, such a theory describes correctly many experimentally observable features 
of  critical phenomena.  Field theoretic renormalization group techniques [ 1] in D = 4 - e  dimensions [2 -4]  
combined with Borel resummation methods of  the resulting e-expansions [ 5 ] led to extremely accurate deter- 
minations o f  the critical exponents o f  all O ( n )  universality classes. The latter requires the knowledge of  the 
asymptotic behaviour o f  perturbation series in four dimensions which is completely known in this theory [6].  
Apart from such important  applications, the ~4-theory, being the simplest renormalizable quantum field theory 
in the four dimensional space-time, has been an ideal ground for testing new methods o f  calculating Feynman 
diagrams and for studying the structure of  perturbation theory. 

The RG functions o f  the ~4-theory were first calculated analytically in four dimensions using dimensional 
regularization [7] and the minimal subtraction (MS) scheme [8] in the three- and four-loop approximations 
in refs. [ 9,10 ]. The critical exponents were obtained as e-expansions [ 3 ] up to terms of  order e 3 and e 4. 

The five-loop anomalous dimension of  the field ¢~ and the associated critical exponent q to order e 5 were 
determined analytically in ref. [ 1 1 ]. The five-loop fl-function and the anomalous dimension of  the mass were 
given in ref. [ 12 ]. However, three o f  the 124 four-point diagrams contributing to the fl-function at the five-loop 
level could be evaluated only numerically. The analytic calculation of  the fl-function was finally completed in 
ref. [ 13 ]. The ensuing e-expansions for the critical exponents were obtained up to order e 5 in ref. [ 14 ]. 

Intending further applications, the Berlin group of  the authors undertook an independent recalculation of  the 
perturbation series of  refs. [ 11,12 ], using the same techniques, and discovered errors in six o f  the 13 5 diagrams. 
This meant that the subsequent results of  refs. [ 13,14 ] were also incorrect. When visiting the Moscow group the 
errors were confirmed and we can now jointly report all expansions in the correct form. 
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2. We consider the O (n)-symmetric theory of n real scalar fields 0 a (a = 1, 2, ..., n ) with the lagrangian 

16~'2 a a" 2 L=½0uoaOuoa+½m2oaoa+ --~-.~.~ gB(0 0 ) , (1) 

in a euclidean space with D = 4 - e  dimensions. The bare (unrenormalized) coupling constant gB and mass rnB 
are expressed via renormalized ones as 

Z4 Z02 m 2 gB="~Zgg=~" (~-~2)2g' m~=Zmzm2= ~2 " (2) 

Here/~ is the unit of mass in dimensional regularization and Z4, Zz, Zm2 are the renormalization constants of 
the vertex function, propagator and mass, respectively, with Zo2 being the renormalization constant of the two- 
point function obtained from the propagator by the insertion, in all possible ways, of the vertex ( - 0 2) [ 10 ]. In 
the MS-scheme the renormalization constants do not depend on dimensional parameters and are expressible as 
series in 1/E with purely g-dependent coefficients: 

z,= 1 + ~ z,,k(g) (3) 
k=l (~k 

The fl-function and the anomalous dimensions entering the RG equations are expressed in the standard way as 
follows: 

fl(g)=½~g+ dd~n~g B i OZgl =~g ~g' ,  (4) 

dlnm_ d in Z,,,2 OZm2,1 
7 " =  d l n / t g  B -  dln/.t 2 - ½ g  Og ' (5) 

d lnZ i  I OZil 02 
7,(g) = d 1--i~2 gB = -  ~ g - ~ g ,  i=2,  4, . (6) 

We also use the relations 

fl(g) =g[272 (g ) -74 (g )  ] , 7m(g) =72(g) -Yo2(g) ,  (7) 

which follow from the relations between renormalization constants implied by (2) and are useful for the calcu- 
lations offl(g) and 7re(g). 

To determine all RG functions up to five loops we calculate the five-loop approximation to the three constants 
Z2, Z4 and Z¢2. The constant Z2 contains the counterterms of the 11 five-loop propagator diagrams. Two of 
them were calculated erroneously in ref. [ 11 ]. The constant Z4 receives contributions from 124 vertex diagrams. 
Of these diagrams, 90 contribute to Z02 after appropriate changes of combinatorial factors. Four of the 124 
counterterms were calculated erroneously in ref. [ 12 ]. 

In the present paper we have used the same methods as in the previous works [ 11,12] to calculate the coun- 
terterms from the dimensionally regularized Feynman integrals, namely, the method of infrared rearrangement 
[ 15 ], the Gegenbauer polynomial x-space technique (GPXT)  [ 16 ], the integration-by-parts algorithm [ 17 ], 
and the R*-operation [ 18 ]. Three diagrams were calculated analytically first in ref. [ 13 ] by using the so-called 
method of uniqueness, later the same results were obtained for them by using the Gegenbauer polynomials in x- 
space together with several non-trivial tricks [ 19 ]. A detailed description of the calculations including the dia- 
gramwise results will be presented in a separate publication. 

The analytic results of our recalculation of the five-loop approximations to the RG functions fl(g), 7z(g) and 
?,n (g) are [ ~(n ) is the Riemann l-function ] : 
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f l(g)=~g2(n+8)-~g3(3n+14)+a-~g4133n2+922n+2960+~(3) 96(5n+22)  ] 

-77-~gS[-5n3+6320n2+80456n+ 196648+ff(3) 9 6 ( 6 3 n 2 + 7 6 4 n + 2 3 3 2 ) - ~ ( 4 )  2 8 8 ( 5 n + 2 2 ) ( n + 8 )  

+~(5)  1920(2n2+55n+ 186) ] 

q- 1241416g6 [ 13n4+ 12578n3+ 808496n2+ 6646336n+ 13177344 

+if(3) 16( - 9 n 4 +  1248n3+67640n2+552280n+ 1314336) 

+~'2(3) 7 6 8 ( - 6 n 3 - 5 9 n 2 + 4 4 6 n + 3 2 6 4 ) - ~ ( 4 )  288(63n3+ 1388n2+9532n+21120) 

+~(5)  256(305n3+7466n2+66986n+ 1 6 5 0 8 4 ) - ~ ( 6 ) ( n + 8 )  9600(2n2+55n+ 186) 

- ~ ( 7 )  112896(14n2+ 189n+526) ] ,  (8) 

72 (g) = ~6g2(n+2) - 4-~zg3 (n + 2 ) ( n + 8 )  + 5-~84gn(n + 2) [5( - n 2 q  - 18n+ 100)] 

- ~ g S ( n + 2 )  [ 39n3 + 296n2 + 22752n+ 77056-~( 3 ) 48(n3-6n2 +64n+ 184) 

+~(4)  1 1 5 2 ( 5 n + 2 2 ) ] ,  (9) 

2)m(g) = ~g (n+2)  -~6g2(n  + 2 ) [5 ]  + ~2g3(n+2) [5n+37]  

i g4(n+2)[_n2+7578n+31060+~(3)48(3nZ+lOn+68)+~(4) 288(5n+22) ]  - 1~337 

+ ~ g S ( n + 2 )  [21n3+45254n2+ 1077120n+3166528+~(3)  48(17n3+940n2+8208n+31848)  

- ~ z ( 3 )  768(2n2+ 145n+582)+~(4 )  2 8 8 ( - 3 n 3 + 2 9 n Z + 8 1 6 n + 2 6 6 8 )  

+~(5)  7 6 8 ( - 5 n 2 +  14n+72)  +~(6)  9600(2nZ+55n+ 186)] .  (10) 

For n = 1 the series have the numerical form 

fl(g) = 1.5g 2 -  2.833g3+ 16.27g 4 -  135.8g5+ 1424.2841g 6 , (11 ) 

72 = 0.0833g 2 -  0.0625g 3 + 0.3385g 4 -  1.9256g s , ( 12 ) 

2)m = 0 . 5 g - - 0 . 4 1 6 7 g  2 + 1.75g 3 - 9.978g4 + 75.3778g s . ( 13 ) 

Note that the five-loop coefficients have changed by about 0.3% for the/?-function, by about 9% for 2),, and by 
a factor of three for 2)2 in comparison with the wrong results of refs. [ 11,12 ]. 

3. These RG functions can now be used to calculate the critical exponents describing the behaviour of  a statis- 
tical system near the critical point of the second order phase transition [4 ]. At the critical temperature T=  Tc, 
the asymptotic behaviour of  the correlation function for I xl --+oo has the form 

1 
F(x )~  [xrD_2+ . (14) 

Close to Tc, the correlation length behaves for t=  T -  Tc- ,0  as 

~~ t -~(  1 +const . .  t'°"+...). (15) 

The three critical exponents q, v and o9 defined in this way completely specify the critical behaviour of the 
system. All other exponents can be expressed in terms of these [ 4 ]. 

The three critical exponents can be determined from the RG functions of  the ¢4-theory by going to the in- 
frared-stable fixed point 
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g=go(6)= ~ g(~)6 k, (16) 
k=l 

which is determined by the condition (fl ,- /3- ½eg) 

/3',(go)=0, /3,(go) = [O/3,(g)/Og]g=go>O. (17) 

The resulting formulas for the critical exponents are 

q=2?~2(go), l /u=2[1-?6~(go)] ,  w=2/3',(go), (18) 

each emerging as an e-expansion up to order 65. From (8)-  ( 10 ) we therefore find 

(n+2)626, 6 (_n2+56n+272)  
q (6 ) -  ~ 1+4(n~+8)2 

62 
16(n+8)4 [5n4+230n 3-  1124n 2-  17920n-46144+~'(3)(n+8) 38465n+22)] 

63 
64(n+8)6 [13n6+946nS+27620n4+ 121472n3--262528nZ--2912768n_5655552 

- ~ ( 3 ) ( n + 8 )  16(n5+ 10n4+ 1220n 3-  1136nZ-68672n-- 171264) 

+ff(4)(n+8)  3 1152(5n+22) -~ (5 ) (n+8)  2 5120(2n2+55n+ 186)]) ,  (19) 

1 /v (e )=2+  (n+2)66  6 
n+8 - 1  26n+8) 2 (13n+44) 

e 2 
+ 8(n+8)  413n3 -452nz -2672n -5312+~(3 ) (n+8 )96 (Sn+22) ]  

63 
+ 32(n+8)6 [ 3nS+398n4- 12900n3-81552n2-219968n-357120 

+~(3) (n+8)  16(3n 4 -  194n3+ 148nZ+9472n+ 19488) 

+~(4) (n+8)  3 288(5n+22)-~(5)(n+8) 2 1280(2n2+55n+ 186)] 

64 
+ 128(n+8) 8 [3n 7-  1198n6-27484n 5-  1055344n4- 5242112n3-5256704nZ+6999040n-626688 

- { ( 3 ) ( n + 8 )  16(13n6-310nS+ 19004n4+ 102400n3-381536n2-2792576n-4240640) 

--~2(3) (rt-t- 8) 2 1024(2n4+ 18n3+981n2+6994n+ 11688) 

+~(4) (n+8)  3 48(3n4-  194n3+ 148nZ+9472n+ 19488) 

+~(5) (n+8)  2 256(155n4+3026n3+989nZ-66018n - 130608) 

--~(6)(n+8)46400(2n2+55n+186)+~(7)(n+8) 3 56448(14n2+ 189n+ 526) 1),  (20) 
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E2 ~3 
o g ( e ) = e -  ( n + 8 ) ~  ( 9 n + 4 2 ) +  4 ( n + 8 )  ~ [33n3+538n2+4288n+9568+~(3)(n+8) 9 6 ( 5 n + 2 2 ) ]  

+ 1 6 ( n + 8 ) 6  [5n 5 -  1488n4-46616n3-419528n 2 -  1750080n-2599552  

- ~ ( 3 )  ( n + 8 )  9 6 ( 6 3 n 3 + 5 4 8 n 2 +  1916n+3872)  

+if (4)  ( n + 8 )  3 2 8 8 ( 5 n + 2 2 ) - ~ ( 5 ) ( n + 8 )  2 1 9 2 0 ( 2 n 2 + 5 5 n +  186)] 

E 5 
+ 6 4 ( n + 8 ) 8  [ 13n7+7196n6+240328ns+3760776n4+38877056n3+223778048nz+660389888n 

+752420864 

- ~ ( 3 )  ( n + 8 )  16(9n 6 -  1104n 5 -  1 1 6 4 8 n a - 2 4 3 8 6 4 n 3 - 2 4 1 3 2 4 8 n Z - 9 6 0 3 3 2 8 n -  14734080) 

- ~ 2 ( 3 )  ( n +  8) 2 7 6 8 ( 6 n 4 +  107n3+ 1 8 2 6 n 2 + 9 0 0 8 n + 8 7 3 6 )  

- ~ ( 4 )  ( n + 8 )  3 288 (63n3+  548n2+ 1916n+3872)  

+ f f ( 5 ) ( n + 8 )  2 256(305na+7386n3+45654n2+ 143212n+226992)  

- ~ ( 6 )  ( n + 8 )  4 9600(2n2+  5 5 n +  186) +i f (7)  ( n + 8 )  3 112896( 14n2+ 189n+ 526) ] . (21) 

For n = I, these expansions read, numerically, 

r/= 0.01852~ 2 + 0.01869~ 3 - 0.00833~ 4 + 0.02566e 5 , (22) 

1 
- 2 - 0.333~ - 0.1173~ 2 + 0.1245 E 3 - -  0. 307~ 4 + 0.951 e5, (23) 

P 

o9= e -0 .630~2+  1.618~3- 5.24~4+20.75~ s . (24) 

Note that r/~5) has decreased by about 30% in comparison with the (incorrect) results of  ref. [ 14], t, ~5) has 
increased by about 10%, and 09 <5) increased by about 0.6% in comparison with ref. [ 14]. 

It is known that the series of the e-expansion are asymptotic series and special resummation techniques [ 20,21 ] 
should be applied to obtain reliable estimates of the critical exponents. Although the size of the e5 terms in the 
physical d imens ion  (i.e., at ~= 1 ) is very large, their contr ibut ion to the exponents in the resummed series is 
very small. This is why even large relative changes of the ~5 coefficients turn out not to change the critical 
exponents ~ within the accuracy of previous determinat ions [ 14,22]. 

~ This was checked in detail by Janke and Kleinert using the resummation programs of ref. [ 21 ]. Since the deviations from the previous 
numbers were found to be very small the results were not published. 
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