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We study the string tension at finite temperature for the Nambu-Goto string occupied by a set of
massless or massive scalar or spin-% Fermi fields. The temperature behavior of the tension is similar in
shape to that of the pure Nambu-Goto string, with a square-root singularity indicating the thermal
deconfinement transition. The presence of scalar or Fermi fields shifts the deconfinement temperature to
lower or higher values, respectively. There is an upper bound on the number of fermions which the
string can support, just as in quantum chromodynamics.

PACS number(s): 11.17.+y, 12.38.Aw, 12.40.Aa

I. INTRODUCTION

In the confined phase of quantum chromodynamics
(QCD), quarks are held together by color-electric flux
tubes forming hadrons. A phase transition to a
deconfined quark-gluon plasma occurs when the tempera-
ture of the system is raised to a certain critical value 779,
This phenomenon has been studied analytically in a qual-
itative way [1] and quantitatively via numerous Monte
Carlo simulations of lattice models [2] so that it is now
reasonably well understood. ‘

In the Nambu-Goto (NG) string model of hadrons [3],
the color-electric flux tube is idealized to be an infinitely
thin line whose dynamics is governed by the string ten-
sion. In this model our understanding of the
deconfinement transition is far less satisfactory. One
reason is the impossibility, at present, to take into ac-
count the many vacuum fluctuations of closed strings
which in spacetime form a grand-canonical ensemble of
world surfaces of arbitrary topology. Not even Monte
Carlo simulations on finite lattices are presently able to
do this. This is why, until now, the temperature behavior
has been studied only for a single string and the same lim-
itation applies to the present work. Fortunately, also the
single string shows a deconfinement transition and it is
hoped that this is not far from the transition in an ensem-
ble. As the temperature is raised, a single string fluctu-
ates with increasing amplitude and at the deconfinement
temperature 79 the fluctuations become catastrophic.
The value of this temperature was calculated to be
T9% /My =0.69 [4], where M % is the zero-temperature
string tension. This number was obtained by evaluating
exactly the finite-temperature string tension in the limit
of large dimension d of spacetime. The deconfinement
temperature is proportional to 1/V'(d —2) [see Eq. (62)].
The large-d expansion had previously been proposed by
Liischer, Symanzik, and Weisz [5] as a calculational tool
and used by Alvarez [6] to obtain the distance behavior
of the quark potential in the NG model.

While the ratio between the deconfinement tempera-
tures of the three- and four-dimensional Monte Carlo
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simulations is accounted for quite well by the Nambu-
Goto string—the simulations show approximately
the factor V2 in accordance  with  the
1/V'd —2 factor—the absolute size of the above value is
too large in companson w1th the Monte Carlo result for
an SU(3) gau dge theory [9] in four spacetime dimensions
which is T9°/Myg=0.48+0.05 (sece Table I). The
size is in better agreement with an SU(2) gauge theory
where T%°/Myg =0.7410.10 (see Table I). Thus, if we
assume the effect of the ensemble of closed strings to be
small, then either the 1/d corrections [10] are large or
the NG string is not a good candidate for the description
of the behavior of SU(3) QCD close to the transition.
Physically, the difference between the color-electric flux
tubes formed by the different gauge fields lies obviously in
the internal structure of the tube. In an SU(n) color
gauge theory, the tube is filled with n2—1 gluon excita-
tions whose mass is zero at the center of the tube and in-
creases to about 600 MeV at the walls [11]. In addition,
there are vacuum fluctuations of a sea of colored and
flavored quarks and antiquarks with various masses. In
an attempt to understand the effect of such additional
fluctuations within the string model of the color-electric
flux tube we investigate the consequences of populatmg
the NG string by massless or massive scalar or real spin-
3 Fermi fields.

Our starting point is the functional integral over all
Euclidean world surface configurations swept out by the
string and over all fluctuations of the scalar or Fermi
fields. Let X*(&) (u=1,...,d; i=1,2) describe the
points of the world surface in the d-dimensional space-
time parametrized by £=(£%&!). The scalar and Fermi
fields llvm% on the string depend only on &, i.e,
¢"=¢"(£%E'). Then the string model to be studied is
defined by the functional integral

z= [y DX e, _ M
where A is the action which for N, real scalar fields is
given by

A=M} [d6Veg + [d%Ve [—;—(Di¢’)2+%m2(¢’)2 )
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TABLE 1. Deconfinement temperature (normalized by the string tension) of the NG and the
Polyakov-Kleinert model [7,8] in comparison with values obtained from Monte Carlo simulations of
lattice gauge theories without quarks (see, e.g., Ref. [9]). The last column gives the SU(2) gauge theory
in three dimensions, for comparison. Note that the ratio with respect to the four-dimensional result is

&

explained by the 1/v'd —2 factor obtained in the NG string model.

Theory SuU@2) SuU@3) Su(64) SU(2);
Monte Carlo 0.74%+0.10 0.48:4:0.05 0.49+0.04 0.9410.03
Nambu-Goto . . 0.69 0.98

Stiff string

0.67 < T9°/Myg <0.69

0.95 < T /My <0.98

(r=1,...,N,) and for spin-} Fermi fields by
Ap= [d%Ve M+ ' B —imyyp?] . 3

Here D; are the covariant derivatives on the world sur-
face. We shall assume that there are Ny complex Fermi
field components. Our final result will be able to account
for both bosons and fermions and for their simultaneous
presence. If they are degenerate in mass it will depend
only on N =Ng—Np, the difference between the number
of scalar and Fermi field Ng —N.

Qualitatively, the results to be obtained in this paper
are of quite a general character since they are merely
based on counting fluctuation degrees of freedom. Quan-
titatively, however, we expect changes since the mode-
mode interactions have been neglected. For the gluons
this may not be too serious since most of the gluon-gluon
interactions have been accounted for by the formation of
the string which is assumed to exist a priori in the model
and forms the background of the field fluctuations. For
quark loops the mistake is more severe. A quark loop an-
nihilates the string inside it since the quark terminates
the color-electric flux. The quarks living on the string do
not account for this. Indeed, the results obtained for the
quark loops will pose a puzzle which will probably be
resolved only after the annihilation effects have been in-
cluded into the model.

The organization of the paper is as follows. In Sec. II
we calculate the free energy of the string in the limit of
large d and obtain an expression which still requires ex-
tremization with respect to a Lagrange multiplier. This
presentation follows closely that given in Ref. [7]. In
Secs. IIT to VII we perform the extremization exactly in
certain approximations and various limiting situations.
The general case is solved numerically. In Sec. VIII we
give a brief discussion of the main aspects of our model
and the conclusions. Some details of the calculations are
relegated to the Appendixes.

II. FREE ENERGY AND GENERAL GAP
EQUATIONS AT FINITE TEMPERATURE

The above actions describe a string evolving in a d-
dimensional Euclidean space with Ny scalar fields or Ny
Fermi fields which are functions of the two parameters £’
(i =0,1). We shall proceed first only for the case of N
scalar fields. For fermions the result is obtained by sim-
ply replacing N by —N in all formulas. In the case of

equal masses, the combined system is described setting
N =Ng—Np.

In the limit of large d, the functional integral can be
done exactly for any N. A large value of N of the order
of d is, however, necessary to see an effect of the addition-
al scalar or Fermi particles in the limit. To do this limit,
it is convenient to separate the extrinsic configurations of
the string from the intrinsic ones by introducing the
metric g;; as an independent fluctuation field and using
Lagrange multipliers to constrain it to the induced metric
on the world sheet:

We choose the Gauss parametrization for the world sur-
face in which only the transverse displacements of the
string coordinates are dynamical field variables by writ-
ing

XHEHN=(&LX% ..., X H=(r,U% , (5)

with the d—2 vertical displacement fields U?
=UYE%EY) (a=2,3,...,d —1). Then the metric is
given by

g[j=8ij+aanajUa > ) (6)

and the action reads as

A= [d%6Vg |M3+AIQ,UD;U+5,;—g;)

+ LD, ¢+ 1mUe"? | . )

The partition function of the string becomes the function-
al integral

Zz=[ (D[ DU)[Dg; [ DAT]e ™4 . ®)

A finite temperature of the system is introduced by im-
posing periodic boundary conditions for all fields in the
“time” direction, e.g.,

Ulr,t)=U%rt+1/T) . 9)

The advantage of the functional integral (8) is that the
d —2 displacement fields and the extra fields ¢" occur
quadratically in the exponent so that they can be in-
tegrated out. For the extra scalar (or Fermi) fields this
can be done exactly and gives an additional effective ac-
tion in the form of a trace log. The quadratic form of the



displacement fields, however, is accompanied by §&-
dependent Lagrange multipliers A%(£) so that the result-
ing effective action in AY is not known. Fortunately,
since the trace log is accompanied by a factor d —2, the
limit d — oo can still be treated exactly. In this limit, the
functional integral is dominated by the saddle point of
the action and it can be shown [6] that this has a constant
metric g; and a constant Lagrange multiplier AY. For
symmetry reasons these will have the form

po O
8i~ (o P1 (10)
and
U (a
0 A/py

At such a constant saddle point, we can then integrate
out the quadratic U® and ¢ fields in (7) and obtain an
effective action

A= [ dpp)? | M3+ L2 Te1n(—203,3,)  (12)
N
+—2Trin —l8§+m2
2 i
+AUE,;—gy) | (13)

where 92/p; is the covariant Laplacian D? for the
saddle-point metric (10):

1 1
E'ag—i— ——a;‘-’

P1

=la. e

i

=1 i 1=
D= =8Vag")]

For fermions, the number Ng in Eq. (13) is simply re-
placed by —Np.

The eigenvalues of the operator —D? in momentum
space are k3 /py+k?/p,. Because of the boundary con-
ditions, the time component of k, the frequencies k, are
discrete,

2mn

— (n=0,£1,£2,---), (15)
Bext

k0=(k0 )n =2TnT ey =

while k, is a continuous variable. We have attached to
the physical temperature the subscript ext to emphasize
that the inverse B,,,=1/T,,; is the temporal extent in ex-
trinsic space (in contradistinction to an auxiliary intrinsic
temperature 7T to be introduced below for calculations).
Thus the trace logs in the action Eq. (13) are sums and in-
tegrals over momenta kg, k. We shall write the effective
action as

d —_—

Aeﬁ'=_

2 RextBext(PQol)sz’ (16)

where f is a “free-energy density” which we separate into
three terms: f=/f,+f,+f,. Setting the number of sca-
lar fields Ng equal to v(d —2), the f;’s are
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P U RSP, T (17
2a Po Pi
~ 1
=Mj+——7%T,
fl 0 (PoP1)l/2 t
dky [ 2 Ay
X —1In | —(ky)? +—k?
n—z-wf—“’z Po o' p1 !
(18)
_ v
fz—W ext
= dky [y | K
X +—+m?| . (19)
n—2—~w T 2‘” Po P1
The parameters &, M3, and i are given by
12 2 1. N o
a d—z MoT g Mo mimgTymi=vm
(20)

To calculate the spectral sums in Eqgs. (18) and (19) we in-
troduce auxiliary intrinsic quantities (announced above).
These are defined in terms of the extrinsic ones via metric
factors as

ext

T= i or B=(py)" By, @1
RE(PI) /Rext ’ (22)
(ko)n 27n
®,= (p('))l/z = o) T oy =2mnT , (23)
g1=k1/(p)'"? . @4
Then the f;’s become
Aot A A A
fo=———14 R AL (25)
20 Po P
fi=Mi+T 2 f°° —1n(xow +i.43),  (26)
Fa=vT E f —ln(a) +q2+m? ) 27

The divergencies contained in Egs. (26) and (27) are con-
trolled by a Euclidean cutoff |k| < A in momentum space
(see also Appendix A). Introducing A=(Ay+A,)/2 the
resulting expressions are

Ao A
f0=—-—l—+—l~' RIS (28)

26 2@ | Po Pi

172

P
f1=M; 3|7 ) (29)
~ 2
_m- 7 _2 1

fo= o 4#LO+LT+4S1+(AT)1/2 %T], (30)
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where L is the divergent integral
2 2

Lo~ S s "4 o
and A is an ultraviolet cutoff
Ar _ m?
4e 27 ’ L 472T?
with 7=0.577 215. . . being Euler’s constant. The sym-
bol S; denotes the convergent infinite sum

Ly=In (32)

S, = 2 [(n24+Ap) 2 —n—Ap/20] . (33)

n=1

Note that f,+f; =fng is the Nambu-Goto energy den-
sity. After absorbing the divergent integral

2
Y (gt m =" (1 4mLy) (34)
f (2 )2 41T 0
into a renormalized string tension
. . il
Mis=M3 1+, —(1+4mL) | , (35)
the total-energy density becomes
. o | %1 (R, M
= M2 e —-—+—|—+—|+B.
I=Mxe =757 |7, & 2a|po P
(36)

All the new contributions, as compared to the pure
Nambu-Goto string, are contained in

m° | = 2 1
=—— |Ly—1+4S|+—5—7— 3
4 T 1 ( 7\,T)1 72 3A«T (37)
To obtain the extremality conditions, the “gap equa-

tions,” for pg,p1,Ag, and A; we have to vary the action
given by Egs. (16) and (36) at fixed extrinsic temperatures
Ty =(po)'/*T. Introducing

pO — WTth _p12 71 o

A T T e o
we find the gap equations as follows:
172
= Ao A, 1 M M
WL |2 A — |2+ =y,
N b [ M @ 2a| P P
(39)
172
_ Ao A1 A A
M- |2 A2+ — |-t ==, o
NG py | M & 2 (p0 P
A 172
o 1h,y |k =0, @1)
@ a@po Po|M
A A 172
1_ 1My _Aﬁ =0, (42)
a ap po (M
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A= \E o us,—sp+ L 43)
o 41 T 1 2 3 A‘T
with S, being another convergent sum
R (44)

S,= 3
n=1

(R*+Ap)? n

The Nambu-Goto case is obtained for 4 =B =0. Equa-
tions (39)-(42) can be rewritten in a form which will be
used later:

M%g—X/a=—L(4+B), (45)
172 )
Ao A
28 KN N T . WL YO S T
A 28| pPo P
T A
A_ 1 _k3+_l =0, @7
a 2a |pPo pP1
(Ag—Ay)/2a=L(4 —B) . (48)

We now write the general expression for the string ten-
sion at finite temperature. It is obtained after dropping
the surface area factor R.,B. in Eq. (16). Let
7=T./Myg be the reduced temperature, then the
string tension is given by

MUT)=Ud —2)MY7r)=1d —2)pp )2 f . (49)
If we factorize out the temperature dependence,
M(r)=M*r=0M%r), (50)

we obtain what may be called the “normalized string ten-
sion” in the form

MU =(pp)*f , (51)

where /= f /M*+=0).

Since the main ingredient of a hadronic string is
gluons, we shall first study the above equations for mass-
less scalar fields. Before doing so, however, it will be use-
ful to repeat the calculation for the Nambu-Goto string
tension since the massless result, in a certain useful ap-
proximation, will follow directly from this.

III. THE NAMBU-GOTO CASE

The Nambu-Goto case is obtained by setting
A =B =0. Thus f, as given by Eq. (36), becomes
12 o
_ A
fNG:M%\IG _Y |20 __}L,l. L ﬁ.{.,_l (52)
Po | M a 72:7 Po  P1
and the gap equations are
o
A 1172 Y
b 25 o (S T L WL RS (54)
po | M 26 | P P1
A A
ALl Mg, (s5)
a 2a [p0 P




46 TEMPERATURE BEHAVIOR AND THERMAL DECONFINEMENT . . .

A=A _
2a

One learns from Eq. (56) that A;=A,=RA. Inserting Eq.
(55) into Eq. (52) we obtain, for the energy density,

0. (56)

o= X1 -(57)
Po MNG
and the solutions of the gap equations are _
A=aM%g , (58)
=1——t—, Co (59)
Po M%IG
__Po o
pl zpo_l * (60)

The total string tension Eq. (51) is therefore given in this
case by

172 T 12112
M= [1—-2L— =‘1— — ,  (61)
MNG TNG

where we have introduced the deconfinement tempera-
ture THS as the value of the temperature T,,, at which
the total string tension vanishes. In the Nambu-Goto
case it is given by
d
TS _

MNG

172
3

(d —2)mr

(62)

This follows from Eq. (38). For d =4 this gives the
deconfinement temperature

d
TG
My

~0.69 , ‘ (63)
d=4

which is larger than the SU(3) value

dec
MC

My
and close to the SU(2) value

=0.48+0.05 , (64)

MC
M NG

=0.7410.10 (65)

(see Table I). A plot of the temperature dependence of
the string tension Eq. (61) is given by the solid line in Fig.
2.

We are now ready to consider the massless case m =0.

IV. THE MASSLESS CASE IN THE ISOTROPIC
APPROXIMATION

Since the zero-temperature string is isotropic and the
deconfinement happens at a rather low temperature, the
confined system does not become very anisotropic and it
is useful to study the equations in the approximation of a
completely isotropic gap with A=A, =A, where they al-
low for a simple analytic solution. For m —0 one has

1703

__p_ @1 |y
A B 4y [3AT —»va . (66)

The energy density obtained from the general expression

Eq. (51)is now

fiso=M%qG__L_l+ __z__
Po @ 20

1.1
Po P

—y 67)
Po

We observe that this formula can be obtained from the
NG expression Eq. (52) (with Ag=A;=X) by replacing
¥ —v(1+v). This is also true for the gap equations and
the final result can be obtained from Eq. (61) after replac-
ing ¥ by y(1+v). Thus we find

172
Mizso(f)= 1_2 (~12+V)
NG
T 21172
=|{1— —7% , ' (68)
iso

where T5° denotes the deconfinement temperature in this
isotropic approximation. It has the value

T:is%c 1 172 3 172
172
= |4 1% (69)
1+v MNG ’

For v=1, i.e., for N =d —2=2 massless scalar fields in
four dimensions, the deconfinement temperature is given
by

T /My =~0.49 (70)

and is in agreement with the Monte Carlo number of
four-dimensional SU(3) gauge theory in Eq. (64).

The color-electric flux tube contains eight gluons. In
four dimensions each has two polarization degrees of
freedom. This would imply Ng=16. For this value we
find the much too small deconfinement temperature

T /My =~0.23 . (1)

One may try and correct this value by assuming that the
gluons are truely massless only at the core of the string
while their mass increases towards the walls where it is of
the order of the 600 MeV [11]. This is about twice as
large as the dimensionally transmuted coupling constant

Aqcp=300 MeV . (72)

It might be that the full four-dimensional number of
polarization degrees of freedom cannot fluctuate freely
inside the flux tube. This is not astonishing. One should
expect the boundary conditions to strongly restrict the
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polarizations of the fields. This is known from work on
the MIT bag model [12]. Inside an infinitely thin string
the entire field lives on the boundary. The most sugges-
tive idealization is that the gluon field inside the flux tube
is almost a true two-dimensional gauge field. Then no
dynamical freedom remains and the Nambu-Goto value
of T% prevails. Because of the strong dependence of
T9° on Ny, the closeness of the NG value of 79 to the
computer value, it appears that the latter scenario is close
to reality. The SU(XN) dependence of the deconfinement
temperature must therefore be a subtle finite tube thick-
ness effect of the gluon fluctuations.
In the fermionic case, Eq. (69) becomes

172 172
Toar _ | 1 3
MNG 1—v (d _2)17'
[T — 3
1_'V MNG ’

Thus we see that while the deconfinement temperature
decreases with v in the bosonic case, it increases for fer-
mions. For v=—1, ie., for =—(d —2), the
deconfinement transition disappears completely. The
case N> —(d —2) is not permissible. This means that
for a certain number of scalar fields, the number of Fermi
fields is bounded from above. Note that asymptotic free-
dom of an SU(#n) gauge theory at zero temperature gives
an upper bound for the number of quarks,

Np<11n2/2,

determined by the positive sign of the first coefficient of
the B function [13]:

B(g)=—g(11n/3—2Nzn /3)/167* .

In our case, if all fields are massless, the number of fer-
mions in four dimensions is bounded by

 TSes (D) :
]
2.5 !
1
{
2.0} /
/
/
1.5 s
,/
//
10f e
L —
0.25 05 075 10 125 15 __ 1.75

FIG. 1. The deconfinement temperature as a function of v for
the massless case in the isotropic approximation. The dashed
curve represents the Nambu-Goto string occupied by massless
spin-% fermions while the dash-dotted curve shows the case of
scalar fields. Scalar fields lower and fermions ‘increase the
deconfinement temperature. There is an upper bound for the
number of fermions, Ny < Ng+2.
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2(T)

FIG. 2. The string tension M 2(7) as a function of the reduced
temperature 7=T,,,/Nng, once for the Nambu-Goto model
(solid line) and once in the presence of N =d —2 massless scalar
fields. In the isotropic approximation (dashed line) the
deconfinement temperature is T3 /My =0.49, much smaller
than the Nambu-Goto value 0.69, and agrees with the Monte
Carlo number for an SU(3) lattice gauge theory. The dotted line
shows the full anisotropic case where T3, /Myg =0.51.

Np<Ng+2. (74)

Although the asymptotic freedom at zero temperature
is closely related to the infrared confinement, the
deconfinement transition at a finite temperature is a fun-
damentally different phenomenon. While asymptotic
freedom is certainly independent of the quark masses, the
deconfinement temperature is expected to depend crucial-
ly on them [1,2]. This is borne out by our model. For
massive quarks living on the string, the above bound is a
complicated function of the field numbers and the masses
and cannot be written in closed form (see Secs. VI and
VII).

We plot Egs. (69) and (73) as a function of v in Fig. 1
and temperature behavior of the string tension, Eq. (68)
for v=1in Fig. 2 (dashed line), where it is compared with

the NG curve (solid line).

V. THE MASSLESS CASE

WITH FULL ANISOTROPY
Now f is given by
. ~ A, 1172 x
amso=M2 _Y v+ 20 A
7 S NG | A .
A
p LR A )
a |Po P1

The gap equations are identical to Egs. (53)—(56) with the
exception of Eq. (54) which has —wvy /p, on the right-
hand side. The solutions are

Ag=atk [1+vP/po | , 76)

M=abtls [1 —vf/po ] , a7



&

. pol 1 —v§¥/po)
i 2po—1—=v¥/py ’

where the symbols with a caret denote the correspondlnﬁ
quantmes normalized by a factor 1/M? NG 1€, O
=0/M?%;. The energy density is

1+v§/py |17

(78)

faniso_:l__ﬁ V+

B

Po 1— ’V?/ Po
and p, is the solution of the quartic equation
pa—2p3+(1— 72— 292 )pd + 20920522 =0 . (80)

Although we have worked with the analytic solutions of
Eq. (80), these are not very instructive and it is not useful
to write them here. From the four solutlons of Eq. (80)
we choose the one which extremizes f*"%°. The resulting
expression for the string tension is shown for the case
v=1 as a dotted curve in Fig. 2. It does not differ much
from the isotropic approximation thus justifying its
study. The deconfinement temperature in four dimen-
sions with v=1 is found to be

Tg:icso/MNGgo-Sl ’ (81)

close to the isotropic number [and thus to the Monte
Carlo result Eq. (64)].

It is interesting to write an analytic result for the string
tension in the neighborhood of the NG string, i.e., for
small v, where it reads as

2o 1)V 12—y e
Vi-29
1 ya 2
— = 82
2 (Vi—29) {1—? e
2 o, P 1, 7 7
MNG v IZ\IG ) V2 gG 1_? (83)

This can be compared with the corresponding expansion
of the isotropic result Eq. (68):

}Qizso(r)'z\’ 1—29—wv i _1, i
v Vi1-29 2" (v 1—29)°
(84)
=M —v «%w—f’j—, - (85)
NG NG

We see that the effect of the anisotropy begins showing
up in the v? term.

VI. THE MASSIVE CASE IN THE ISOTROPIC
APPROXIMATION

We start by writing the energy density which will be
dlstmgulshed from the massless case by a subscript p
which is related to the scalar field mass by p=m /Myg.
From Eaq. (36),
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fifo=ﬂ§6__?’__l+_7:~_

—t— ]+B (86)
0

pPo o P
where B has already been defined in Eq. (37). The gap
equations are
B+t -Le | Lilio_ 4y @
Po @ 2@ Po P
M%{G_L_l+,l i_.l._ =—B, (88)
Po @ 28 |{Po M
1—— —+— =0, (89)
Po P~

with A4 defined by Eq. (43). We can manipulate these
equations into a more convenient form,

MY;—X/a=—14+B), 90)

Yo ALyl a4, 1)

Po 2a Po P

SR U SR ) PP 92)
21po P

From Eq. (92) it follows that

f=1+8-b, (93)
where
2 1 m 2
p=-L_— andp’= — - (94)
1277' )\'T MNG

i is a dimensionless parameter which scales with d like
V'd —2. Both 4 and B involve the infinite sums S; and
S, given by Egs. (33) and (44), respectively. For this
reason we cannot write an equation for pg as in the mass-
less case (A =pghq.y ). Instead, we write the quantities
of interest as functions of A; and u. This (Ay,u) pair
then becomes an input for the numerical treatment of the
problem. From Egs. (90)-(92) it follows that

A+B+2 )
= , 95
P N A+B+2—]) ©3)

_A+B+2 o .
pl 2}’\ . (96)

Together with Eq. (93) the normalized string tension be-
comes

3, ()=

172
1
2

7

(A+B+2)?
(A+B+2—P)f

(A+8+22f |
(A+B+2—F)

=1 ©7)

Note that (1) 4 +§ is always bigger or equal to zero (see
Appendix B), (ii) 7 is always less or equal to one, and (iii)
f already appears as an overall factor under the square
root through the term (pyp;)'? in particular, through
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(p1)'/%. Together this makes A2 zero for vanishing f and
imaginary only when f becomes negative. Although we
cannot solve the problem analytically we see right away
that M o, p has a square-root singularity as in the
Nambu-Goto model. The string tension (97) is plotted in
Fig. 3 for various values of the parameter m.

For a large mass m or low temperatures, }1\ and B con-
tribute very little and can be approximated by their lead-
ing asymptotic behavior for large arguments [see the Ap-
pendix, Egs. (A13) and (A14)]. The string tension takes
the simple form

L g2 expl—2a(Ar)2)

ML, =M +—v— , - (98)
sor=0TENG T M mA)
where
2 —
xTz#l-T—zﬁ C99)
and
12 =gr2/3 . (100)

For small i we are close to the massless case and we
can study this limit analytically. As we can see from Egs.
(93)-(97) all relevant p-dependent quantities are con-
tained in the terms denoted A and B. In the limit of van-
ishing y, 4 and B are given by

A=—B=vD (101)

with D given by Eq. (94). If we recall that
Ar=u’po/4m>* we see that D is independent of y, i.e.,

D=(x/3p)*=9/p, . (102)
This will become useful shortly.

Thus using Eq. (101) with the value of D given above
we get

1
p0=2_—.so—-=_‘1—’?(1+1/) N
p=0

(103)

nfsn,}xr)

FIG. 3. The string tension for the massive case in the isotro-
pic approximation for different values of u=m /Myg in com-
parison with the Nambu-Goto case. For small u, T5, is very
close to the massless (£ =0) case Eq. (69). This plot was done
for N =d —2 scalar fields.
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1 _ 1—9(+v)
o 1=29(14w)

p1= (104)

so that the string tension becomes

172 7 ]
ML, —o(r)= [?_% =V 1-29(1+v). (105)

iso,p=

This is precisely the string tension Eq. (68) for the mass-
less isotropic case.

VII. THE MASSIVE CASE
WITH FULL ANISOTROPY

The energy density and gap equations for the massive
case with no approximation are given by Eq. (36) and
Eqgs. (45)-(48), respectively. After inserting Eq. (47) into
f this becomes

O pmie =14 B —B(Ae/A)1 2, (106)
and the gap equations are solved by
M=aMig(1+ 1), (107)
M=aMis(1+8), (108)
together with the metric factors
po =1+ ? , (109)
V(+4)1+8)
(1+8)
Py Po (110)

=po(2+§+z)—(1+2> ’

In analogy with Eq. (96) these can also be written in the
form

1+ 4
= 111
P A B+t2—7 (1)
pi=(1+B)V/F, (112)
and the resulting string tension is

a+Du+s |7

wT (A+§+2—f>f] 4
_la+DHu+8)7 s (113)

(A+B+2-F) '

The second equality in Eq. (113) is explained by con-
siderations similar to those given in the paragraph follow-
ing Eq. (97). Thus as in the previous cases, the string ten-
sion has a square-root singularity when f becomes nega-
tive. For large mass or low temperatures this expression
is well approximated by

u? exp[ —2m(Ay)1/?]
TR Ao
NG T

2 2 _
aniso, 7=<0 “‘MNG

(114)

A plot of M1 iniso,y('r) for various values of p is shown in
Fig. 4. Again, in the limit of small ;4 we approach the re-
sult of the massless case. As before we can study this lim-
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06 07
T=T/Myg
FIG. 4. The string tension for the massive anisotropic case
for different values of p=m /Myg and N =d —2 scalar fields in
four dimensions. Again, the Nambu-Goto curve is plotted for

comparison. In the regime of small u, the deconfinement tem-
perature is very close to the massless result T /Myg=0.51.

it analytically. Using Egs. (101) and (102), we get

1+v5 |
we=1—D v+ | , 115
frl 0 [V 1—vD ] (115)
1+vD
T A (116)
Po 2—f
pr= 1—;5 , (117)
The string tension becomes
A 172
2 _ (l—vzﬁz){
aniso,u=0('r)_ (Z—f) . (118)

To go further we have to solve Eq. (116) for p, as we did
in the isotropic case. Thus we insert D as given by Eq.
(102) into Eq. (116) and obtain the following equation for

Po:

=203+ (1 — P2 =P8+ 242 9%pe—v?P2=0.  (119)

This is precisely Eq. (80) which p, obeys in the massless
case.

VHI. DISCUSSION AND CONCLUSION

We have studied the effects of massive scalar or Fermi
fields living on a Nambu-Goto string where “living on”
means that the fields depend only on the (£%,£!) parame-
ters and not on the coordinates of the Euclidean embed-
ding space. As a function of temperature, the behavior of
the string tension is quite similar to the NG case. There
is always a square-root singularity at a certain tempera-
ture which signals the onset of a deconfined phase. Our
main result are equations which describe how much the
deconfinement temperature decreases with the number of
scalar particles and increases for fermions. There is a
simple approximate analytic formula for Ng massless sca-
lar and Ny Fermi field components in which the
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deconfinement temperature is proportional to 1/V'1+v
where v=(Ng—Nj)/(d —2). Thus the number of fer-
mions which allows for a confining string is bounded, just
as in QCD.

Of course, there is no problem in finding a value of the
parameters m,v at which the model’s deconfinement tem-
perature coincides with the values obtained by Monte
Carlo simulations of an SU(3) pure gauge theory (for in-
stance, m =0, v=1). As argued before, these values
show that the boundary conditions on the gluon field
make it essentially two dimensional and that the SU(N)
dependence is mainly due to finite tube thickness effects.
In the limit of two-dimensional gluons where the number
of dynamical gluons is zero so that Ng=0, the
deconfinement transition would be moved upwards and
disappear completely for only Np=~0.4 massless Fermi
field components. This is much too small to be physically
correct. Since colored up and down quarks in two di-
mensions have already 3X2X2 components it is very
hard to understand, within this simple model, how nature
manages to still have a deconfinement transition in spite
of the existence of so many sea-quark—antiquark pairs in-
side hadrons. Even if the quark fields are allowed to have
a constituent mass of =300 MeV their component num-
ber is still bounded by Nz=~0.5. The explanation for this
contradiction must lie in the basic defect of the model to
ignore the annihilation of the string inside the quark
loop. To incorporate this into the theoretical description
should greatly improve the model.

For all parameters m,v, the low-temperature behavior
of the 'string tension approaches the NG case since the
quantities 4 and B tend to zero for T/m —0. The same
thing happens, of course, for all temperatures in the limit
of large mass m.

On the basis of the present model it is hard to under-
stand how the string can accommodate as many quarks
on a string as mentioned above. In conclusion, it appears
that a full incorporation of the internal gluon and quark
fluctuations into the NG string may lead to the correct
model for the color-electric flux tube of QCD which is
much better than the NG string model alone.

APPENDIX A: EVALUATION OF
FINITE-TEMPERATURE CONTRIBUTIONS
TO FREE ENERGY

In this appendix we illustrate how to calculate f, and
f> as given by Egs. (26) and (27) by working out f, in de-
tail. For the finite system under consideration we write

faas

o o d -
fi=vr 3 f_w%rl—ln(ﬁ—i-wﬁ-i«mz). (A1)

n=-o0

The integral has already been calculated in [14]. The re-
sult is
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© 2 © system result, denoted by f7,
=T 3 @Amyr=S Ll 5 oy e ¥ v /2
n=—co 2T }“T n=—o I d2 2 fflz
t=v[ I dm@+m) =" (1+4nLy)  (A3)
(A2) (27) dar
We regularize f7 by adding and subtracting the infinite ~ with L given by Eq. (31). Thus
m?
=l (ff=rh= 1+47L0)+ﬁ [ s -[° _dn ](n2+x 172
n=-—aw
i 2 4 2 172
=—— 14+47Ly+—— dn |(n*+Ar) (A4)
4qr Tl ()\'T)l/Z A’T ngl f
f
We evaluate this by carrying the integral up to some ~2 4 = K;Q2nA(A y172)
. A .. =M T
large but finite value n =N and then taking the limit for B= 47 (Ap)! ,2 (A11)
N-—o. In the process terms of order O(1/N) and 77 n

higher are eliminated. The result is [14]

[z [ dn

n=1

(n24+Ap )72

1

+A (L.
12 T

—1)+ApS; . (A5

Collecting terms in Eq. (A5) we arrive at Eq. (30).

APPENDIX B: ASYMPTOTIC EXPANSIONS
FOR A AND B

We give here the asymptotic expressions for the quan-
tities

2
f— Lp+1—4(5,—S,)+ 371 (A6)
T
i o 2z 1
B=2—|L; 1+4S1+(LT)1/2 ol )

where fI=1t /Myg. For large Ay there is a particularly
useful representation of S; in terms of modified Bessel
functions [14]:

=1 1y 1 1
Si= Tk 2(7»T>”2+ 124
= K (27 (7))
. 11/2“““1“ AT )T . (A8)
mAr)* 2 n
=1y __ 1 S 172
S, 2LT 2y )1/2+2 gKO(ZTI‘ﬁ(AT) ). (A9
Thus 4 and B become simply
N i K, 27w (Ap)7?) S
4m V(A'T =1 "
+8 3 Ko(2ma(Ap)17?) (A10)

A=1

Thus we observe that, while 4 is always bigger or equal
to zero, B is always less or equal to zero. This, of course,
follows from the positivity of the modified Bessel func-
tions K, and K;. Also, because both K, and K, decay
exponentially fast for large arguments we see that
lim A=— lim B=0.
A.T—-wo }\,T—-»eo

From Egs. (A10) and (A11) it follows that 4 +58 >0.

For large masses or low temperatures, the modified

Bessel functions can be approximated by their leading ex-
ponential behavior and we have

(A12)

~ _ mE 1 2 12
A2 |77 gy [TRL 2R
(A13)
m? 172
~— Er TIREL ———exp[ —2m(Ap) /4] . (A14)
For small A},S| and S, are approximated by
S1==1LBMr+LLNF— LTI+ -+, (A15)
S, =1L+ 3IL5ME— LTI+ (A16)
Thus, the leading term in 4, B for small Apis
~— .E_ =
- A~—B~ 3?»T =vD . (A17)

Because of A =p%p,/4m*7* the behavior of A, can be un-
derstood as a competition of limits between u and 7 with
po being determined. This is a familiar situation from an
earlier investigation of possible effects of an extrinsic cur-
vature stiffness term [15,16].

ACKNOWLEDGMENTS

We thank Dr. P. Rakow for discussions and T. Sauer
for attempting to simplify the solutions of Eq. (80). Spe-
cial thanks go to M. Kiometzis for useful criticism and
corrections. This work was supported in part by
Deutsche Forschungsgemeinschaft under Grant No.
KL-256.



46

[1] L. G. Yaffe and B. Svetitsky, Phys. Rev. D 26, 963 (1982);
B. Svetitsky, Phys. Rep. 132, 1 (1986).

[2] For recent reviews, see M. Fukugita, in Lattice ’88,
Proceedings of the International Symposium, Batavia, Illi-
nois, 1988, edited by A. S. Kronfeld and P. B. Mackenzie
[Nucl. Phys. B (Proc. Suppl.) 9, 291 (1989)]; A. Ukawa, in
Non-Perturbative Aspects of the Standard Model, Proceed-
ings of the Conference, Jaca, Spain, 1988, edited by J.
Abad, M. B. Gavela, and A. Gonzalez-Arroyo [Nucl.
Phys. B (Proc. Suppl.) 10, 66 (1989)]; E. Marinari, Phys.
Rep. 184, 131 (1989).

[3] Y. Nambu, in Symmetries and Quark Models, edited by R.
Chand (Gordon and Breach, New York, 1970); T. Goto,
Prog. Theor. Phys. 46, 1560 (1971). .

[4] R. D. Pisarski and O. Alvarez, Phys. Rev. D 26, 3735
(1982). The value TS /Myg given in Table I for the
string theory in four dimensions should be multiplied by
V2 since the authors have used d rather than d —2 in
their expression for the string tension.

[5] M. Liischer, K. Symanzik, and P. Weisz, Nucl. Phys.

TEMPERATURE BEHAVIOR AND THERMAL DECONFINEMENT ... 1709

B173, 365 (1980).

[6] O. Alvarez, Phys. Rev. D 24, 440 (1981).

[7] H. Kleinert, Phys. Rev. D 40, 473 (1989).

[81A. M. Polyakov, Nucl. Phys. B268, 406 (1986); H.
Kleinert, Phys. Lett. B 174, 335 (1986).

[9] For a review and further references, see M. Flensburg and
C. Peterson, Nucl. Phys. B283, 141 (1987).

[10] The first assumption is suggested by the fact that the static
quark potential obtained in the limit d — o« coincides with
the exact one as shown by J. F. Arvis, Phys. Lett. 127B,
106 (1983).

[11] L. S. Celenza and C. M. Shakin, Phys. Rev. D 35, 1591
(1986); 36, 2843 (1987).

[12] P. Hasenfratz and J. Kuti, Phys. Rep. 40C, 75 (1978).

[13]1D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973) H. D. Politzer, ibid. 30, 1346 (1973).

[14] G. German and H. Kleinert, Phys. Rev. D 40, 1108 (1989).

[15] G. German and H. Kleinert, Phys. Lett. B 225, 107 (1989).

[16] G. Germéan, Mod. Phys. Lett. A 6, 1815 (1991).



