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Summary. — A Lorentz-covariant spinor basis for the scattering of spin
configurations (s, 3) — (s, §) is constructed for massive particles producing
scalar amplitndes which are free of kinematic singularities, real analytic,
and eigenstates of P, T and s «»> u crossing.

1. — Introduection.

Due to the bad analyticity properties of the helicity decomposition of the
scattering amplitude (*) Reggeization procedures have been complicated by
unpleasant factors introduced to avoid kinematic singularities (23) and con-
straints taking account of threshold and pseudothreshold behaviour (3-3).
Therefore it has been pointed out (°) that the natural way of parametrizing
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high-energy scattering is to introduce Regge-type poles in the invariant ampli-
tudes of an expansion of the S-matrix in terms of Hepp and Williams (hereafter
referred to as HW) (7) standard covariants. This and related expansions pro-
vide at present the only general method of reducing the scattering of arbi-
trarily spinning particles to a scalar problem without introducing the dit-
ficulties mentioned above. As in the Toller description of the S-matrix (8),
the automatic fulfilment of constraints at pseudothreshold, manifests itself
in the occurrence of families of usual Regge poles. However, the families gen-
erated in this fashion are much smaller since they provide a minimal set of
poles enforcing the constraints. In this way they introduce a natural mixing
of Toller’s O,, representations. Conversely, one Toller representation intro-
duces poles in several invariant amplitudes at a time together with all their
family members. The success of fitting nucleon-nucleon-scattering and simul-
taneously its crossed process, photoproduction and certainly good old pion-
nucleon scattering (°) by very few Regge-type poles in the invariant ampli-
tudes has led us to study the HW decomposition in more detail.

The spinor covariants were constructed by HW considering only the ortho-
chronous proper Lorentz group. For applications to strong interactions this
basis is not very usecful since the discrete symmetries of parity and time-reversal
invariance produce linear relations among the invariant amplitudes. Even
though HePP later proved that a decomposition free of kinematical singularities
exists also with covariants invariant under P and 7 (°), his proof does not
give any hint as to how these covariants can be formed explicitly. Furthermore,
if we want the invariant amplitudes to be real analytic in order to satisfy a
Mandelstam representation (1°) it is necessary to have the covariants Her-
mitian. Finally, since we plan to later Reggeize these amplitudes in the ¢-chan-
nel, they should have simple crossing properties with respect to the exchange
of s and u-channel. This requirement will be seen to cause the covariants to
factorize into a product of covariants containing kinematical variables of the
two vertices separately. This property has led in the applications (°) to the
factorization of the residues of the individual Regge poles generated by a pole
in the invariant amplitude and can probably be used to prove a general factor-
ization theorem.

Spinor covariants satisfying all these requirements with invariant amplitudes
free of kinematic singularities are called parity eigenstandard covariants (PES).

(\y K. Hepp: Helv. Phys. Acta, 87, 55 (1964); D. N. Wirriams: UCLA Report
No. UCRL-11113 (1963).

(¢) M. TorLLeR: Nuovo Cimento, 53 A, 671 (1968); D. Z. FrREEDMAN and J. M.
WaNG: Phys. Rev., 166, 1560 (1967).

(®) K. HeEpp: Helv. Phys. Acta, 3T, 55 (1964).
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Math. Phys., 1, 240 (1965).
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We will see in the later discussion that there is an intimate connection
between the invariance under P and 7 and the crossing property with respect
to the t-channel. In fact, all the amplitudes constructed by us until now with
the view on P and T invariance also automatically satisfy the other require-
ments. It is this point which has made the previously discussed HW covariants
very awkward in their P and T properties: HEPP and WILLIAMS consider only
irreducible spinor functions which are obtained by coupling the spinor indices
of all in- and outgoing particles (*). The covariants have then certainly compli-
cated crossing properties and therefore get wildly mixed by P and T trans-
formations.

The problem of finding PES has been attacked in the first paper of this series
(hereafter referred to as I) (*!') for the simple case of the scattering of massive
particles with spin configurations (12)

(8, 0) — (s, 0), 0, 0)— (1, 0), 3, 0) — (%, 0) .
The program is continued here for the case
(s, 3) = (s, 3).

In Sect. 2 we define the spinor expansion of the scattering matrix and impose
the physical conditions upon the basic spinors. In Sect. 8 we give the PES
for (1, 1) — (4, %) scattering in order to understand the construction principle
which is then used in Sect. 4 to solve the general problem (s, )— (s, 3).
The calculations necessary for the proofs are often quite involved. We shall
try to keep the description here as compact as possible and give details else-
where.

2. — Spinor amplitudes.

The scattering matrix for the process p’-+ ¢'—> p"-+ ¢" with spins (s's;, ¢'cl)-
n n

- (s 8, o-"o‘:) and masses (M', ') (M”, ") is used to define a covariant spinor
amplitude by the relation

1) {p’A"¢"B"|T|p'A' ¢ B’} = <p"syq oa| T|p seq ob>-
- D (L(p")) Do (IAg) D2 (L") D2 (IA9'))

(*) K. HArRDENBERG, K. H. MUrTter and W. R. THEIS: Nuovo Cimento, to be
published (1968).

(*?) D. N. Wirriams (impublished).
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where D*(A) is the usual spin-s representation of the Lorentz group .D'* and
L(p) denotes the pure Lorentz transformation from momentum p to rest (**).
The spinor amplitude has then the simple Lorentz transformation property

(2) {p”A” qr/BﬂlTlp/Al qu/} e {APHZ”AQ,’B”TIAP’ Z’AQ,B’} .

- DX (A) DS (A)Ds,  (A) DS, (A)

74" BB

and is presently believed to be analytic in the whole 12-dimensional complex
space spanned by any three independent linear combinations of the four-momenta
of the system (1°). Singularities are supposed to occur on the Lorentz invariant
surfaces

(3) Ig a o

{ e t=(p'—p")* >4, u=(p'—q" )=,
PESME, P =M%, 9'>wm?, ¢ >u,

where $8,, ,, %,, M, M, ug, 4, are the lowest physical thresholds in the cor-
responding channels. For such an amplitude HEpp and WILLIAMS have given
an expansion

(4) {pﬂA/Iq/IBIIITIpIAI ql Bl} J— Z Fme(pllAllqllBI/’ plAlq.’Bl) y

where F,, are functions of only the Lorentz invariants containing at most the
physical singularities (3). The requirements of K, being PES can then be
put into the following form:

a) P-invariance:

(5) Km(p”A”q"B”, pfArq/B/) . ﬂme(ﬁnE// anﬂ’ ﬁ/;l-/ Q'IBI)_

D (L2(9") Do (L2(¢") D, (LX) D5, (2*(0)

YL B"R

where we have denoted the parity transformed momenta by p’, etc.

b) T-invariance:

(6) Km(p”A" q//Br/’ p/ AquBI) — Tme(ﬁ’Z, q-/B/’ ﬁIIZII qr/El/).
PLE . (o nlcid . r . ’ .
- D, (i0,) D3, . (10, ) DZ, ,.(io,) D%, »(t0,) .

(13) We shall use the conventions of H. Joos: Fortschr. Phys., 10, 65 (1962).
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c) Real analyticity:
(7) Km(p//AI/ qHB//, p/AquB/)* — Km(plAlql Bl, pl/AlfqllBlf) .
d) s<> u crossing:
(8) Km(puAf/ o q/B/, p/A/ - q//B//) . Vme(P”A” q//BN’ p/Ar q’B/) .
- DL (L7%(q")i0,) DS, (L72(q') d0,) .
e) Factorization:
(9) Km(pl/AllqﬂBll, plAlql BI) — Vﬂz-..ﬂk(p//A//p/A/) Vﬂl.“‘uk(qﬂBllql B/) .

Thus the only amplitudes contributing to the expansion (4) are those where 7,
is the product of the intrinsic parities of the scattering particles. In addition,
elastic amplitudes have to satisfy 7,,= 1 and s<> u crossing symmetric ones

Fo(s, L, u) =y, I (u, t, s).

3. — Parity eigenstandard covariants for (11) - (13) scattering.

For this case HW’s standard covariant basis can be written in terms of
three arbitrary independent linear combination of the external momenta
2y, %, 23 and the axial vector associated with them
(10) W, = 18,2, 21255, == 1€,(2,, 22, %)

Py Ax

in the form (see Appendix A)

2,2, 2120 22,
Za%q R9%s ZyZs
232 2325 %323
w2, W2, W2,
oo te(062,25) ie(0G252,) 4 1e(602,%;) .

Here o, are the Pauli matrices while the spinors

(11) (7;6) 4r 0 » (#,0)g 5
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have been denoted, for brevity, by 2,, Z; ete. the bar indicating that the spinor
carries the spin indices of the particles ¢”, ¢' (*). Under parity o,, 5, transform as

pflo_ plo_
A T

" '
- qc q 0o
Oy —> " g ;o

o
Oy o

(12)

Because of this we find it useful to take for z, the following combinations of
momenta:

] ! 1
ZI—Q—E(% i f})
(13) 2, =P= (%—,— g}”),
1 ql ql/
Ry == !l=“(—7+—”)-
’ 2\p’  p

With this definition the covariants ¢, P, and ¢ immediately become eigenstates
of parity with eigenvalues +, —, and -, respectively. In the equal-mass case,
P can also be seen to be of negative parity. For nonequal masses the defect
can easily be corrected by introducing the momentum

] . . ql . Ml’l_+_ MI . :Z!_?—I_’—'JM;, . *MII_HI
(L4) _'p_'u// ‘u/_ MII_'_MI -P 2M”+ Mr 2M/I+M/q

and substituting P — 7P everywhere. For symmetry purposes it is also con-
venient to use ie(odpq) instead of ie(ccPq) (*4). Hence an equally good spinor
basis is

91, Pg, @ , et
(15) AN ® e,

e, PQ, 9Q , we,

o5,  icloGpg),  ie(0dqQ),  ie(@iQP),

where the underlined covariants are parity eigenstates. They represent in the
usual Fermi coupling scheme the covariants 1X1, 1Xy;, X1 and y; Xys,
respectively (u(p"A")O,u(p'A")%u(q" B")O,u(g' B') are abbreviated by 0,X0,).
In order to find the remaining 12 covariants we first make use of the six

(*4) Without introduecing kinematic singularities.
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other Fermi couplings

o . +p —+
y X yﬂ _' g O-y, b
# X = — o5,
y yS’}}y n
© R T
(16) VsV XVy ——0O O'p ’
“ — —H =
ysy X y5y,u - o G,u ’
uy —— 1 ,uv+-+___; ny— =—
0" X0y, =—zT T,,= T Ty
atd N w— =+
o X Vs G,uv - T T,uv - I T,,w ?

0 o, 1 0
where y, = ) and y; = ( ) are the y-matrices, ou,= (V.9 — ¥, ¥Yu)

G, 0 0 —1
PO
(17) - a#:t M” Ml ’
and 7, denotes the spinors
(] 8) T:’ 1;”11 (G 01') + (G,u ) ?II?", (O'”O'y)_: c*a, — O'vO'” .

(Clearly, the corresponding 7= v o are obtained by substituting p” M", p’ M'—
—q'u", ¢ u'.) These Fermi couplmgs serve to replace of the basis states (15) (14).
This can most easily be seen by forming

MIIMI
p'

otgt =8

WQ 4~ P[set (153) — W@Q],

(19) ir+i+: _(1 + M'— M MII__ #/) Q_(M//_ M’ + MII_ MI) .

32 M/I+ MI M”+ M/ Mll_!_ MI M”+ #I
-1&8(05qQ) + P[Set (15) — (WQ—y qe, @.8(0‘5’(1@))]’

1 _ M'— M  u—u M'— M pw—u

— Tt Tt —

3ZTT (MlI+MI+ II+ )QQ}——( M/I__‘_MI'LL_T_M)

(=0) -ie(03qQ) + P[set (15) — (WQ, qQ, ic(c59Q))],

ot o+ 06 ) = ie(aGQP)+Pset (15) — (WQ, 9@, ic(054Q), ie(aGQP))],

Lot 6t + 076" = ie(oapgq) +
(21) + P[set (16) — (W@, qQ, ie(054Q), is(c5Q P), ie(s5pg))],

}(ot6+t + 06t 4+ 06"+ 076) = o5,
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where P [set (15) — W@Q] denotes collectively a linear combination of basis
spinors (15) with all coefficients being polynomials in the Lorentz invariants
in which W@ does not occur. For this reason we can first substitute WQ — oG+
from (19) (%), then, since on the one hand the determinant of the system
(20) is

M‘II___ MI o M”_ M.’

1 r2y?—ax:—y? with ® = ——— = —
+ y y M”—|— M/ y ﬂ,,+ul’

and therefore > 0 for massive particles, and on the other hand the already
substituted covariant W does not occur in the remaining polynomial P [set (15)
—WQ, qQ, te(66¢gQ)] on the right-hand side, we can replace (z+7F, t+77) >
—> (q@, ie(caqQ)) (**). Finally, eq. (21) permits us to eliminate 1e(0GQ P),
ie(06pq), and oG by virtue of ¢*&, -Gt and o6~ (**). After this only the
basis vectors Wgq, Wp, qq, ¢p, PQ, QQ remain to be parity diagonalized. For
this we note that the relations

+ P[set (18) — (W, 4@, 1e(554Q), i2(c5QP),

g g = Wg }
ie(oGpq), oG, Wq, Wp)] ,

¢p= Wp
(22) B B 3
qgq=299 —q*q,

¢P=29qp—q"q

can be used to eliminate the first four of them. The remaining two certainly
can be expanded as

(23) PQ=L(PQ"+P-Q), QQ=4(QQ+ QE),

but only two of the four covariants on the right-hand side are independent
of the 14 others already constructed.

The sixteen independent ones among these eighteen PES are found by
the relations derived in Appendix B:

1 1

' n " ' —i—- i I r II_MI ’ .

(24) MM {(H + ' )(M + M p)QE 4 (' — ' WM u ')
QQ — 'Lt' "f M”)(M” /I M/ ) PQ—{-— I/ )(Ml/ 18 L _Z‘/I/ ) PQ }

= P[eighteen PES — (QQ*, PQH)],
1 1 1 =
28) i @M M) S P — (M — M )
(25) H'+MMM{(M uY (M u /A)z(é (o — " ) (M ')

g PO — (4 YO — M )QQ — (' — Y+ M"‘"QQ_} -

— P[eighteen PES — (QQ*, PQ*)],
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which show that we can drop Q@* and PQ*. It is easy to verify that the basis
obtained in this fashion automatically consists of eigenstates of 7 and crossing.
It satisfies the Hermiticity condition if everywhere <P and ip are used instead
of P,p. Also it is trivial to see that the factorization condition is fulfilled.
Thus we have found a basis of PES. Their intringic parities are given in Table I.

TasrLeE I.

Qp Q7 | Pp | Pg | ¢*q | ¢*p | PQ- | Q@ | ot6* | 02 6F | vt a2

‘ S R W

- — —

Folo+ | -

+ 4+
+ 4+
|

+
o+ +
H +
+H H

-+ _

Vi -+ 1
4. — Parity eigenstandard covariants for (s,1)— (s,}) scattering.

With the insights gained in the last Section we are now ready to prove the
following.

Theorem: The following 4(2s4-1)%? spinor covariants constitute a basis set
of PES for (s, 1) — (s, 1) scattering:

number of covariants

( g 1
P 2 (it+j=3s 3(28 1 1),
Kl =S@ Py 5 5
(¢ G, +q oh)a* 45 i+j=8—1 2(2s —1),
*=q 1,2
¢Ep 3,4
. A I i+ j=s—1 14s
Kir, —=S(@Q) (P) | o,5 5,6 ! 2
0:6'_“ 7
(26) ot 8 i=—sg—1} 1

K 0 =SQ) (P) (90 (q* o — 4" 7,)-

Cad 1,2 i4+jLhk=s—1
S Mot Lh=s—3}}22s—1),
lg"g e T8 itjfk—s—2)
TE 1,2 i4+j+k=8—13
KT 0 =S Q) (PY (9g)k 7y, | 9% T o4 k—=s—1}2(28).
q+q—z—,:l:,uv 7,8 @_]_j+k:3__?21
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Here the indices %, j run through 0, 1, 1, ..., s while k is restricted to the integers
0,1,2,...,s (or s—1). For brevity we have denoted D“*(Qc) by ()¢ and used
S to symmetrize all indices of the particles with spin s (see Appendix A for
more details). Finally, (¢q)— is a short form for {(¢7¢™—q—¢~) (see Appendix B).
The proof of the theorem proceeds by 1nduct10n For s=1 the PES (26)
become indeed the same as those in Table I. Consider than the 4(2s 4 1)2
Hepp basis covariants for the case of spin s> 1 (see Appendix A):

m
¢“Q 1 k=—3014,
¢“Pp 2 k=—%,0,4%,
9“q 3 k=—1%,0,1,
WeD 4 k= 0
’ o — 1
27)  Qrw=S©Q) () (@', z;é z :; 3;:10
ie"(G, B, q) T k= 0,4,
1e#(d, 4, @) 8 k= 0,3,
ie*(G, Q, P) 9 k= 0,1,.
a* 10 k= 0,%,.

i+ +k=s8—1  i,j=0%, .,

where (q)"}(g)* = 1. A large subset of these covariants can immediately
be made PES. For this we distinguish three classes of covariants:

a) i>1. In this case we can factor out one (Q)tas:
(28) Qo == SO QG m -

But Q{:ji.J.k] may be transformed to the spin (s —1)— PES K“_*i”,’,':] accord-
ing to (26) and the factor (Q)! just brings them to the form K77 - In this way
we obtain 4(2s)? PES of spin s.

b) i=0,j>1%. Here we take one factor (P) out to write
(29) O, — SEFOEET

and treat Q- ﬁ_m] in the same way as above. This generates 4(4s — 1) new
PES K77, Thus only eight more PES are missing to span the space. A little
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more work is necessary to recover them. Consider the remaining Hepp co-
variants with:

c) 1= 0 ]':O kzs—%—>0.

They can be written in the form
(50) Qtoro.ati = S@' Q500 m£4d, 6.

If we expand Q% ™ _ in the PES Kf;?:,f]"” and set ¢ = %(¢g*+ g~) we can ex-

[0,0.5s—1]

press (30) in terms of 2-4(2s)2 PES
(31) Sq* K iar

To find the eight independent ones notice that ¢> % or j > 1 terms lie in the
space treated in a) and b) (since we can pull out one @ or P and absorb ¢*
in K). Hence they must be contained in the set of 16 PES:

(32) Se*Eiim
These are explicitly given:

i) For integer s>2 by

(99 *q*(q" off — g~ 03;) 3+,
(33) Satq (g9, 7,

(99)*q ¢~ 7, T .

ii) For half-integer s>% by
(99) 9" of — ¢ o) 6%,
(34) St (9 gt q (gt ol — g7 0;) 5%,
(q0)=Hg* o, 72
i) For s=1 by
(35) Sq*{¢* T, ¢* P, o 5%, v, 7).
iv) For s =$§ by
(¢F o, + g o) 5*,
(36) Se¢* | (¢ o —q o) 5%,

(QQ)_ %;w .E:I:pw, q+ q— T;; ,E:I:pw .
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In the first two cases we can make use of the result of ref. (') that gt ¢* and ¢-¢—
can be expanded in terms of

(Q)-= $(¢* ¢t —qq), Q*, P, Qg+, Pg~

with only polynomial coeflicients (see Appendix B). This allows us to separate
out the eight independent covariants (the other are contained in the sets a)
and b) in case i)

St ol — g o)),
(37) S et q (¢t ot — g7 a}) 5%,

St gt 7, T
and in case ii)

STt et (gt of — g o)) 7
(38) S, 7,
Swa *zfq T, T*
which are indeed the remaining covariants described in (26).

It remains to discuss the cases s=—=1 and s = 2. First we note that the
covariant Sqq(q, p) can be used to build the four PES

(39) S(ee)-97, S@g-» and  Sgq7, Sqtgp

by the same argument as the one used above in the cases i) and ii). In the
other six covariants of the s =1 case,

S Wq, 40, 06, qie(o5, D), ¢ic(6QP), ¢is(65Qq)} ,
we can perform the spin-} substitutions (19), ..., (21) to obtain the 12 PES:
(40) Sq:b + :I:pz Sqif;vfi”
which are not obviously contained in the set of 28 PES described in a) and b).
Since only eight among the 16 PES (39) (40) can be independent of the 28
others we have to find eight linear relations. They are described in the Ap-

pendix B. In order to save space we give these relations only for the case of
equal masses M"== M', u"=— u’'. (The general case produces involved but
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trivial mass factors as in the case of (§4) > (4, }) scattering.) They are:
(41) M*u*(8u(qq)-p~ — Mq* 7}, 77) = P (28 PES of a) and b)),

(42) M2utqtq—p— = P (28 PES of a) and b)),

M
(43) Mzﬂ[—uz(QQ)j++ﬁ (¢t — g op) G + Meqropar 4 = at zow o

+ IZM (@, (¢ of + q+a;)6—ﬂ] = P(28 PES of a) and b)),

(44) MM[MM 4 9 gt + — Mt (q+a+—q ;)0 —”—2M3q+a+a—”+ g Tk T —
— M(u*+ 2(Q9) (¢~ o + q+a;)6+ﬂ]: P(28 PES of a) and b)),

(45) M:u(qt o, — ¢ o}h)6™ = P (28 PES of a) and b)),

(46) M4yq+d,t&i#—M2M£(q+0'j;——q—a;)6i":P(28 PES of a) and b)) .

Hence all the 16 covariants (39) and (40) are spanned by the eight PES:
(¢"a, g ay)d,  (gvol —q o)t q* T, T

which indeed obey the formula (26).

In the s= % case the four PES of the first row of eq. (36) turn out to be su-
perfluous by the relations

(47) MAuqt(qto, + q of)o5e + M2,u ’ ¢ (gtof —qo;)ct# =
= P(56 PES of a) and b)),

. 2
18— Muwrgigror + e e (0 1) ¢ rop — o) ot =
—= P(56 PES of a) and b)),

which are obtained by multiplying (45) and (46) with ¢t and ¢- and combining
them.

This completes the proof.

Also in this general case it is obvious that all covariants can be written in
the factorized form (9).
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5. — Conelusion.

By keeping the spinor indices of in- and outgoing particles, a rather straight-
forward construction of PES has been possible. The methods developed in
this work can certainly be extended to the more general cases (s, 0) — (s + AS, o)
and (8, )<< (s + AS, 1 - Ac) which make up all spin contigurations, experi-
mentalists will be able to investigate for quite some time. Equipped with this
knowledge of the S-matrix expansion all threshold consequences can be de-
rived in a straightforward fashion. Certainly, the PES (26) are a little clum-
sier to handle for larger spins than the helicity basis. But in the Reggeiza-
tion procedure the work invested in deriving (26) pays well off by naturally
generating minimal pole families, automatically fulfilling all kinematical restric-
tions, and facilitating the simultaneous treatment of s and % channels.

There is some problem yet as to how one should include zero-mass particles
in this framework. This problem will be investigated in future work.

* &

The authors are grateful to Profs. F. PENZLIN, G. SOMMER, O. STEINMANN
and W. Turis for useful discussions.

APPENDLIX A

Hepp-Williams basis.
For the irreducible basis spinor functions of » vectors (2,...2,) of rank
[r,s] Hepp has given the following expressions:

@) r=8-+2t>¢

[ i

(A.1 ) 5:.8] (z)“‘é - S [ I—‘[ (z"‘) ]-_[ (z"lﬂm—x XZ"JH"‘)] ap
af -i=l m=1
g) r=s—2t<s
L ]
(A.Z) EZ,S] (z)“ﬁ. - S. [ H‘(z’ﬁ) H (z”r+:m-1 X z"”""")*]aé "
«f i=1 me=l
y) r=8+#0
(A.3) 03 = S TT ey
af i=1
r—1
(A4) ,[::‘;](Z)“ﬂ' - S H (z?‘z )"‘Lﬁ:l (z"r/\z"rﬂ/\z"rﬂ)“rbr :

«f Iml



INVARIANT FUNCTIONS AND DISCRETE SYMMETRIES - II 671
0) r=s=0
{0.0] - 10,0} —_ Y7 N I -4
(A'5) Qo.l (Z) =1 ? x,2 (z) - gprgaznlzn,zn,zn‘ )

where 8 means complete symmetrization with respect to the indices o and ﬁ

af
separately,
T - . 1 T . .
,,‘Sﬁ OgeerlOpfreccfly m_! IZQ "‘p(l)"'“p(r)ﬁq(l)ﬂqu) :
»; are all combinations of z; giving different covariants, and 2z, X=z,, ... are the
spinors
(A.6) 21 X% = S(r190, z;)a.a. ’
&

while

.y A
(A.7) (21A22\23)ap = Eupax 06 pR1%2%5 -

For the special case of 2 X2 scattering we have # =3 and we find with
(A.8) Wy, == 16,4y 22122 %3

for r = s the basis vectors:

s m=1,Lk=—1%,0,..
A.9 Q[:f]’?“'= 2V (2 ) (2. ) {zl m ’ 5y Uy
( ) [,klﬁ asﬁ.(l)(z)(s)ap 'w#m:2,k-—-0,%71,-..,
where
(A.10) (2,)f = DEO(z) | Aot =1
and
i (8 ) (s—a)! ti(s + B)l(s— B! *.
(A1) S ) = ( o L
S (20)ap (22)%, (%) -
°f|+nfj+05k-¢_
BotByt+Br=8

For r—= 8 4+ 1 we obtain as a basis

[ (%2 X %3)ar m=1 t+jt+tk=s,
(A.12) b= (s + 1afs o Lo ) Qs | (RBaX2)ar m=2 j=0 i+ k=3,
| (31 XRa)ar M= i+j+k=s,

similarly for s=r+1

o [ (2 X2a)3s m=1 i+j+k=s,
(A.13) remg = (r+1 Bls B 1B) Qi | @X2)j m=2 j=0 i+ k=s,
| (21 X2)3 m=3 1+j+k=s.
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Beeause of its irreducibility this basis cannot be used directly for our purpose.
We need a reducible basis transforming as the product of two ingoing particles
[s,0]%[3, 0] and two outgoing ones [0, s]x[0, §]. This space is spanned by
the irreducible basis vectors of the spaces

(s +34,s+3], [s+%Hs—2], [s—%s+3] and [8*12‘98;%]-

In Sect. 8 eq. (27) we gave a basis for this space. We can show that this basis
does not lead to kinematic singularities of the invariant amplitudes by expanding
all vectors of the HW basis (A.9)-(A.13) in terms of our basis (27). In fact,
it is easy to wverify that

(A14)  Qibelin — (5 4+ Lals A"} B)(s+ 3 fls 4"} B")-

’fo’l;'k'](p” A”, Q" Bll;pl Aiq/Br);

with the following index relations:

m ) j k m' s 7’ I’
1 >0 3 ) j EF— %
2 >} 5 0 J b— %
1 > % —3% 2 ¢ i—3% k=—1%
2 >4 0 4 Z — 3% k= 0
1 s+ % 0 —3 1 i—3=s = k=—3%
2 8 0 0 6 i—3=s—% j=0 k= 0
while
A.15 [o—Fe—dIm Gliikm:i 7k m' . AL B
( . ) Q[ijk]aﬁ - Z (’L? m; ] m)(s %OC|S 2 )
i1k m'

. (S—%ﬁISA” %B”) ?::’r:.’j’,k’](p” AH qll B”, p/ A/ q/-B/) ,
where the coefficients G are given by
G(i ?. k 1 ; /L., j’ k, m,) = 6ii'(§fj'6kk'+‘}6m'10 ’
G(’L' j k 2; 7:/ jl k, m,) —_ (SH' (Sj]-' 6]0]6'_}6,”'9 — (3“'—}5_1'7" (Skk’(smﬁ ‘li_ (Q’“l__ifsjjr_&(ﬁkkl (37?1'8 .

Similarly one expands QEZ;ﬁ:}Mm and Qfgj,;*;;fg*]’" by using the definitions (A.12)

and (A.13).
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APPENDIX B

Relations among PES.

Superfluous PES occurring in the diagonalization of parity on the standard
covariants are eliminated by the following method. One substitutes te(c@QP),
ie,(G, @, P) or ig,(G, p, q) for o,, &, in some suitable covariants. This creates
new covariants which can be expanded in terms of the standard basis with at
most polynomial coefficients. After this the standard covariants are replaced
by PES. The work is facilitated by the fact that one is only interested in
expressing a very small number of PES as a polynomial combination of the
others. Thus one only has to peel out the coefficients of these few PES.

1) 8pin (3 3) — (3 1) scattering. Here we start out with the substitution
G, —1i€,(6, @, p) in Pg and o, —ig,(cQP), &, = 1e,(5, p, q) in o5. This gives the
relation
(B.1)  Pie(6QPg) = ie(aQPq) P + iP%(c6Qq) + i(Pq)e(cdQP) ,
(B.2)  ig,(0QP)ie"(GPg) = — P*Qq)0G + (Qq) PP + P*¢Q — (Pq) PQ .
Introducing the eighteen PES (cf. egs. (15), (19)-(23)) we are led to the relations
(24) and (26), which permit us to eliminate QQ* and PQ@™.

2) Spin (31) — (3 1) scattering. In order to avoid astronomical formulae
we give the relations only for equal masses M'= M", y'= u". One uses the
same method as above to derive the equations

(B.3) WgP = —iP?%(05Qq) + P(28 HW covariants of a) and b)),
(B.4) Wie(65Qq) = @2q* P + P(28 HW covariants of a) and b)),

(B.5)  Wie(o6Pq) = — P?q*Q) + P*(Qq)qoG +
+ P(28 HW covariants of &) and b)),

(B.6) WqQ = Q*qie(c5Pq) + (Qq) qic(cGQP) +
+ P(28 HW covariants of a) and b)),

(B.7) Woé = iqe(o6QP) + P(28 HW covariants of a) and b)),

(B.8) Wie(c6QP) = — P?*Q*qo5 + P(28 HW covariants of a) and b)),

where we have explicitly shown only the contribution of eight standard covariants
of interest for the derivation of the relations while the remaining ones are
lumped together in the polynomial expression P(28 HW covariants of a) and b)).
The relations (41)-(46) result from eqs. (B.3)-(B.8) substituting HW covariants
by the 28 PES of a) and b) and 16 PES of eq. (35).
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RIASSUNTO (%)

Si costruisce una base spinoriale, covariante secondo Lorentz, per lo scattering di
configurazioni di spin (s, 3)— (s, 3), per particelle dotate di massa producenti ampiczze

scalari libere da singolaritd cinematiche, analitiche reali, ed autostati di P, T e del-
Pincrocio s < u.

(*) Traduzione a cura della Redazione.

HuBapuantubie GyHKIHEH H JAUCKPETHbIE CHMMETDPHM. - II

Pesrome (*). — KoacTpyupyercss JIOPEHTI-KOBAPMAHTHBIH CIIHHOPHBIH bazuc nOns
paccesiHusl CIIMHOBBIX KOHGUTYypaimii (s, 1) — (s, %) Ans MacCHBHBIX 4acTwll, MOCPEACTBOM
06pa3oBaHus CKAISIPHBIX AMIUIMTYX, KOTOPBIE ABJISAIOTCS CBOOOIHBIMI OT KHHEMATHYCCKHX

CHHIYIISIpPHOCTeH, BEIECTBEHHBIMM, aHATIUTHYCCKUMHA, U coOCTBeHHBIX cocTosAHmil ansa P, T
U 8§ <> u KpPpOCCHHIA.

() ITepeseoeno pedaxyueil.



